Skip to main content

Advertisement

Log in

Comparison of elastic scattering spectroscopy with histology in ex vivo prostate glands: potential application for optically guided biopsy and directed treatment

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The false-negative rate of ultrasound-guided sextant prostate biopsy has been estimated to be as high as 35 %. A significant percentage (10–35 %) of these prostate cancers diagnosed at a second or later attempt are high grade and, therefore, potentially lethal. We discuss the feasibility for performing optically guided biopsy using elastic scattering spectroscopy (ESS) to reduce sampling errors and improve sensitivity. ESS measurements were performed on 42 prostate glands ex vivo and correlated with standard histopathological assessment. Sliced glands were examined with wavelength ranges of 330–760 nm. The ESS portable system used a new fiber-optic probe with integrated cutting tool, designed specifically for ex vivo pathology applications. ESS spectra were grouped by diagnosis from standard histopathological procedure and then classified using linear support vector machine. Preliminary data are encouraging. ESS data showed strong spectral trends correlating with the histopathological assignments. The classification results showed a sensitivity of 0.83 and specificity of 0.87 for distinguishing dysplastic prostatic tissue from benign prostatic tissue. Similar results were obtained for distinguishing dysplastic prostatic tissue from prostatitis with a sensitivity and specificity of 0.80 and 0.88, respectively. The negative predictive values obtained with ESS are better than those obtained with transrectal ultrasound (TRUS)-guided core-needle biopsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Flanigan RC, Catalona WJ, Richie JP, Ahmann FR, Hudson MA, Scardino PT, DeKernion JB, Ratliff TL et al (1994) Accuracy of digital rectal examination and transrectal ultrasonography in localizing prostate cancer. J Urol 152(5 Pt 1):1506–1509

    PubMed  CAS  Google Scholar 

  2. Karakiewicz PI, Bazinet M, Aprikian AG, Trudel C, Aronson S, Nachabe M, Peloquint F, Dessureault J et al (1997) Outcome of sextant biopsy according to gland volume. Urology 49:55–59

    Article  PubMed  CAS  Google Scholar 

  3. Keetch DW, Catalona WJ, Smith DS (1994) Serial prostatic biopsies in men with persistently elevated serum prostate specific antigen values. J Urol 151:1571–1574

    PubMed  CAS  Google Scholar 

  4. Uzzo RG, Wei JT, Waldbaum RS, Perlmutter AP, Byrne JC, Vaughan ED (1995) The influence of prostate size on cancer detection. Urology 46(6):831–836

    Article  PubMed  CAS  Google Scholar 

  5. Borboroglu PG, Comer SW, Riffenburgh RH, Amling CL (2000) Extensive repeat transrectal ultrasound guided prostate biopsy in patients with previous benign sextant biopsies. J Urol 163:158–162

    Article  PubMed  CAS  Google Scholar 

  6. Epstein JI, Walsh PC, Sauvageot J, Ballentine Carter H (1997) Use of repeat sextant and transition zone biopsies for assessing extent of prostate cancer. J Urol 158:1886–1890

    Article  PubMed  CAS  Google Scholar 

  7. Stroumbakis N, Cookson MS, Reuter VE, Fair WR (1997) Clinical significance of repeat sextant biopsies in prostate cancer patients. Urology 49:113–118

    Article  PubMed  CAS  Google Scholar 

  8. Bigio IJ, Mourant JR (1997) Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy. Phys Med Biol 42:803–814

    Article  PubMed  CAS  Google Scholar 

  9. Crow P, Stone N, Kendall CA, Persad RA, Wright MPJ (2003) Optical diagnostics in urology: current applications and future prospects. BJU Int 92:400–407

    Article  PubMed  CAS  Google Scholar 

  10. Wagnieres GA, Star WM, Wilson BC (1998) In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68:603–632

    PubMed  CAS  Google Scholar 

  11. Wells WA, Barker PE, Macaulay C, Novelli M, Levenson RM, Crawford JM (2007) Validation of novel optical imaging technologies: the pathologists’ view. J Biomed Opt 12:051801

    Article  PubMed  Google Scholar 

  12. Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, Fujimoto JG (1997) In vivo endoscopic optical biopsy with optical coherence tomography. Science 276(5321):2037–2039

    Article  PubMed  CAS  Google Scholar 

  13. Crow P, Molckovsky A, Stone N, Uff J, Wilson B, WongKeeSong LM (2005) Assessment of fiberoptic near-infrared Raman spectroscopy for diagnosis of bladder and prostate cancer. Urology 65:1126–1130

    Article  PubMed  CAS  Google Scholar 

  14. Prieto MCH, Matousek P, Towrie M, Parker AW, Wright M, Ritchie AW, Stone N (2005) Use of picosecond Kerr-gated Raman spectroscopy to suppress signals from both surface and deep layers in bladder and prostate tissue. J Biomed Opt 10:044006

    Article  Google Scholar 

  15. Salomon G, Hess T, Erbersdobler A, Eichelberg C, Greschner S, Sobchuk AN, Korolik AK, Nemkovich NA et al (2009) The feasibility of prostate cancer detection by triple spectroscopy. Eur Urol 55:376–384

    Article  PubMed  Google Scholar 

  16. Zonios G, Perelman LT, Backman V, Manoharan R, Fitzmaurice M, Van Dam J, Feld MS (1999) Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo. Appl Opt 38:6628–6637

    Article  PubMed  CAS  Google Scholar 

  17. Osawa M, Niwa S (1993) A portable diffuse reflectance spectrophotometer for rapid and automatic measurement of tissue. Meas Sci Technol 4:668–676

    Article  Google Scholar 

  18. Perelman LT, Backman V, Wallace M, Zonios G, Manoharan R, Nusrat A, Shields S, Seiler M et al (1998) Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution. Phys Rev Lett 80:627–630

    Article  CAS  Google Scholar 

  19. Underwood JCE (2000) General and systemic pathology. Churchill Livingstone, Philadelphia

    Google Scholar 

  20. Bigio IJ, Bown SG, Briggs G, Kelley C, Lakhani S, Pickard D, Ripley PM, Rose IG et al (2000) Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results. J Biomed Opt 5:221–228

    Article  PubMed  CAS  Google Scholar 

  21. Dhar A, Johnson KS, Novelli MR, Bown SG, Bigio IJ, Lovat LB, Bloom SL (2006) Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique. Gastrointest Endosc 63:257–261

    Article  PubMed  Google Scholar 

  22. Lovat LB, Johnson K, Mackenzie GD, Clark BR, Novelli MR, Davies S, O'Donovan M, Selvasekar C et al (2006) Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett's oesophagus. Gut 55:1078–1083

    Article  PubMed  CAS  Google Scholar 

  23. Mourant JR, Bigio IJ, Boyer J, Johnson TM, Lacey JA, Bohorfoush AG, Mellow M (1996) Elastic scattering spectroscopy as a diagnostic tool for differentiating pathologies in the gastrointestinal tract: preliminary testing. J Biomed Opt 1:192

    Article  PubMed  CAS  Google Scholar 

  24. Mourant JR, Fuselier T, Boyer J, Johnson TM, Bigio IJ (1997) Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms. Appl Optics 36:949–957

    Article  CAS  Google Scholar 

  25. A’Amar OM, Ley RD, Bigio IJ (2004) Comparison between ultraviolet–visible and near-infrared elastic scattering spectroscopy of chemically induced melanomas in an animal model. J Biomed Opt 9:1320

    Article  PubMed  Google Scholar 

  26. Mourant JR, Bigio IJ, Jack DA, Johnson TM, Miller HD (1997) Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties. Appl Optics 36:5655–5661

    Article  CAS  Google Scholar 

  27. Reif R, A'Amar O, Bigio IJ (2007) Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media. Appl Optics 46:7317–7328

    Article  Google Scholar 

  28. Duda RO, Hart PE, Stork DG (2001) Pattern Classification. Wiley, New York

    Google Scholar 

  29. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2:121–167

    Article  Google Scholar 

  30. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    Google Scholar 

Download references

Acknowledgments

The authors would like thank the residents and employees at Boston Medical Center ENC Pathology Lab., for their help during this project: Dr. T. Williams, Dr. F. Shaves, Dr. B. Tierno, Dr. S. Aryab, R. Gedeon, and D. Zvagelsky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. A’Amar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

A’Amar, O.M., Liou, L., Rodriguez-Diaz, E. et al. Comparison of elastic scattering spectroscopy with histology in ex vivo prostate glands: potential application for optically guided biopsy and directed treatment. Lasers Med Sci 28, 1323–1329 (2013). https://doi.org/10.1007/s10103-012-1245-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1245-6

Keywords

Navigation