Skip to main content

Abstract

The long search for a ‘toxin’ produced by plant pathogens met with disappointment until attention was centred on a host-specific toxin (HST). The disappointment that spanned almost half a century resulted mostly from the study of toxins that function in various types of symptom development, but are not the initial inciting agents of disease. ‘Microorganism X (but not others) produces substance Y which damages plant or plant group A (but not others), and only A is parasitized’. This statement by Wood (1973) showed serious need for toxin study. The finding of a group of highly host selective HSTs, valuable both as tools for academic research on plant host–parasite interactions and as markers for epidemiological survey of pathogens in fields, confirms that the search for toxins is an important part of modern plant pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas HK, Tanaka T, Duke SO, Porter JK, Wray EM, Hodges L, Sessions AE, Wang E, Merrill AH Jr, Riley RT (1994) Fumonisin-and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiol 106:1085–1093

    PubMed Central  CAS  PubMed  Google Scholar 

  • Abdel-Farid IB, Jahangir M, van den Hondel CAMJJ, Kim HK, Choi YH, Verpoorte R (2009) Fungal infection-induced metabolites in Brassica rapa. Plant Sci 176:608–615

    Article  CAS  Google Scholar 

  • Agarwal A, Garg GK, Singh US, Mishra DP (1994) Detection and role of chlorotic toxin and phytohormone in the pathogenesis of Alternaria blight in Brassica napus. Curr Sci 66:442–443

    CAS  Google Scholar 

  • Agarwal A, Garg GK, Devi S, Mishra DP, Singh US (1997) Ultra-structural changes in Brassica leaves caused by Alternaria brassicae and destruxin B. J Plant Biochem Biotechnol 6:25–28

    Article  Google Scholar 

  • Akamatsu H, Itoh Y, Kodama M, Otani H, Kohmoto K (1997) AAL-toxin-deficient mutants of Alternaria alternata tomato pathotype by restriction enzyme-mediated integration. Phytopathology 87:967–972

    Article  CAS  PubMed  Google Scholar 

  • Akamatsu H, Taga M, Kodama M, Johnson R, Otani H, Kohmoto K (1999) Molecular karyotypes for Alternaria plant pathogens known to produce host-specific toxins. Curr Genet 35:647–656

    Article  CAS  PubMed  Google Scholar 

  • Akimitsu K, Kohmoto K, Otani H, Nishimura S (1989) Host-specific effects of toxin from the rough lemon pathotype of Alternaria alternata on mitochondria. Plant Physiol 89:925–931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer MK, Pradier JM, Quevillon E, Sharon A, Simon A, Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Collemare J, Cotton P, Danchin EG, Da Silva C, Gautier A, Giraud C, Giraud T, Gonzalez C, Grossetete S, Guldener A, Henrissat B, Howlett BJ, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Neuveglise C, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Segurens B, Sexton A, Silva E, Sirven C, Soanes DM, Talbot NJ, Templeton M, Yandava C, Yarden O, Zeng Q, Rollins JA, Lebrun MH, Dickman M (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7, e1002230. doi:10.1371/journal.pgen.1002230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson DR, Hegde S, Reinhard E, Gomez L, Vernier WF, Lee L, Liu S, Sambandam A, Snider PA, Masih L (2005) Aminocyanopyridine inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK-2). Bioorg Med Chem Lett 15:1587–1590

    Article  CAS  PubMed  Google Scholar 

  • Andreasson E, Ellis B (2010) Convergence and specificity in the Arabidopsis MAPK nexus. Trends Plant Sci 15:106–113

    Article  CAS  PubMed  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomes L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  • Ayer WA, Pena-Rodriguez LM (1987a) Metabolites produced by Alternaria brassicae, the black spot pathogen of Canola, Part 2, Sesquiterpenoid metabolites. J Nat Prod 50:408–417

    Article  CAS  Google Scholar 

  • Ayer WA, Pena-Rodriguez LM (1987b) Metabolites produced by Alternaria brassicae, the black spot pathogen of canola. J Nat Prod 50:400–407

    Article  CAS  Google Scholar 

  • Ayer WA, Bains PS, Pena-Rodriguez LM, Tewari JP (1987) Production of a host specific phytotoxin by Alternaria brassicae. In: Proceedings of the 7th international rapeseed congress, vol 257. Poznan, Poland, (Abstr.), pp 1256–1261

    Google Scholar 

  • Bains PS (1989) Purification, chemical characterization, host-specificity, bioassay, mode of action, and herbicidal use of the toxin produced by Alternaria brassicae. Ph.D. thesis, University of Alberta, Edmonton, Alberta, Canada, 137 p

    Google Scholar 

  • Bains PS, Tewari JP (1986) Isolation and characterization of the toxin produced by Alternaria brassicae. In: Proceedings of crucifer genetic workshop 3, University of Guelph, Canada. Crucifer Genetic Cooperative, 66 p

    Google Scholar 

  • Bains PS, Tewari JP (1987) Purification, chemical characterization and host specificity of the toxin produced by Alternaria brassicae. Physiol Mol Plant Pathol 30:259–271

    Article  CAS  Google Scholar 

  • Bains PS, Tewari JP (1989) Bioassay and mode of action of an Alternaria brassicae toxin. Can J Plant Pathol 11:184–189

    Article  Google Scholar 

  • Bains PS, Tewari JP, Ayer WA (1993) A note on phytotoxicity of homodestruxin B- a compound produced by Alternaria brassicae. Phytopathology 74:157–160

    CAS  Google Scholar 

  • Bakar FDA, Murad AMA, Hamid AA, Zamrod Z, Mahadi NM, Sullivan P (2005) Induction and expression of cutinase activity during saprophytic growth of the fungal plant pathogen, Glomerella cingulata. Asia Pacific J Mol Biol Biotechnol 13:63–69

    Google Scholar 

  • Ballio A (1991) Non-host-selective fungal pathogens: biochemical aspects and their mode of action. Experientia 47:783–790

    Article  CAS  Google Scholar 

  • Berto P, Belingheri L, Dehorter B (1997) Production and purification of a novel extracellular lipase from Alternaria brassicicola. Biotechnol Lett 19:533–536

    Article  CAS  Google Scholar 

  • Berto P, Comménil P, Belingheri L, Dehorter B (1999) Occurrence of a lipase in spores of Alternaria brassicicola with a crucial role in the infection of cauliflower leaves. FEMS Microbiol Lett 180:183–189

    Article  CAS  PubMed  Google Scholar 

  • Beisson F, Koo AJK, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, Mhaske VB, Cho Y, Ohlrogge JB (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132:681–697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Physiol Plant Mol Biol 46:189–214

    Article  CAS  Google Scholar 

  • Brandwagt BF, Mesbah LA, Takken FLW, Laurent PL, Kneppers TJA, Hille J, Nijkamp HJJ (2000) A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B-1. Proc Natl Acad Sci U S A 97:4961–4966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brandwagt BF, Kneppers TJA, Nijkamp HJJ, Hille J (2002) Over expression of the tomato Asc-1 gene mediates high insensitivity to AAL toxins and fumonisin B-1 in tomato hairy roots and confers resistance to Alternaria alternata f. sp. lycopersici. Nicotiana umbratica plants. Mol Plant-Microbe Interact 15:35–42

    Article  CAS  PubMed  Google Scholar 

  • Buchwaldt L, Green H (1992) Phytotoxicity of destruxin B and its possible role in the pathogenesis of Alternaria brassicae. Plant Pathol 41:55–63

    Article  CAS  Google Scholar 

  • Buchwaldt L, Jensen JS (1991) HPLC purification of destruxins produced by Alternaria brassicae in culture and in leaves of Brassica napus. Assignment of the IH-13-NMR spectra by ID-and-2D techniques. Photochemistry 30:2311–2316

    Article  CAS  Google Scholar 

  • Buchwaldt L, Jensen JS, Green H (1991) HPLC purification of destruxins from Alternaria brassicae and examination of their role in pathogenesis. Can J Plant Pathol 13:272 (Abstr.)

    Google Scholar 

  • Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183

    Google Scholar 

  • Chaturvedi C (1972) A new leaf spot of Poplar incited by Alternaria alternata (Fr.) Keissler. Indian Phytopathol 25:316–318

    Google Scholar 

  • Chen J, Mirocha CJ, Xie W, Hogge L, Olson D (1992) Produc-tion of the mycotoxin fumonisin B1 by Alternaria alternata f.sp. lycopersici. Appl Environ Microbiol 58:3928–3931

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen LY, Price TV, Silvapulle MJ (2005) Dark leaf spot (Alternaria brassicicola) on Chinese cabbage: spatial patterns. Aust J Agric Res 56:699–714

    Article  Google Scholar 

  • Chhikara S, Chaudhury D, Dhankher OP, Jaiwal PK (2012) Combined expression of a barley class II chitinase and type I ribosome inactivating protein in transgenic Brassica juncea provides protection against Alternaria brassicae. Plant Cell Tissue Org Cult 108:83–89

    Article  CAS  Google Scholar 

  • Cho Y, Kim KH, La Rota M, Scott D, Santopietro G, Callihan M, Mitchell TK (2009) Identification of virulence factors by high throughput targeted gene deletion of regulatory genes in Alternaria brassicicola. Mol Microbiol 72:1316–1333

    Article  CAS  PubMed  Google Scholar 

  • Chung KR (2012) Stress response and pathogenicity of the necrotrophic fungal pathogen Alternaria alternata. Scientifica. http://dx.doi.org/10.6064/2012/635431

  • Cobb MH (1999) MAP kinase pathways. Prog Biophys Mol Biol 71:479–500

    Article  CAS  PubMed  Google Scholar 

  • Cooke DEL, Jenkins PD, Lewis DM (1997) Production of phytotoxic spore germination liquids by Alternaria brassicae and A. brassicicola and their effect on species of the family Brassicaceae. Ann Appl Biol 131:413–426

    Article  CAS  Google Scholar 

  • Covert SF (1998) Supernumerary chromosomes in filamentous fungi. Curr Genet 33:311–319

    Article  CAS  PubMed  Google Scholar 

  • Cramer R, Lawrence C (2004) Identification of Alternaria brassicicola genes expressed in planta during pathogenesis of Arabidopsis thaliana. Fungal Genet Biol 41:115–128

    Article  CAS  PubMed  Google Scholar 

  • Cramer RA, La Rota CM, Cho Y, Thon M, Craven KD, Knudson DL, Mitchell TK, Lawrence CB (2006) Bioinformatic analysis of expressed sequence tags derived from a compatible Alternaria brassicicolaBrassica oleracea interaction. Mol Plant Pathol 7:113–124

    Article  CAS  PubMed  Google Scholar 

  • Cristina M, Rodriguez S, Petersen M, Mundy J (2010) Mitogen activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Article  CAS  Google Scholar 

  • Daayf F, Platt HW (2000) Changes in metalaxyl resistance among glucose phosphate isomerase genotypes of Phytophthora infestans in Canada during 1997–1998. Am J Potato Res 77:311–318

    Article  CAS  Google Scholar 

  • de Zelicourt A, Montiel G, Pouvreau JB, Thoiron S, Delgrange S, Simier P, Delavault P (2009) Susceptibility of Phelipanche and Orobanche species to AAL-toxin. Planta 230:1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Clarke A, Hancock JT, Neill SJ (1999) H2O2 activates a MAP kinase-like enzyme in Arabidopsis thaliana suspension cultures. J Exp Bot 50:1863–1866

    CAS  Google Scholar 

  • Desikan RS, Mackerness AH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dickman MB, Park YK, Oltersdorf T, Li W, Clemente T, French R (2001) Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci U S A 98:6957–6962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doares SH, Syrovets T, Weiler EW, Ryan CA (1995) Oligo galacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci U S A 92:4095–4098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Epple P, Apel K, Bohlmann H (1995) An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol 109:813–820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eshel D, Ben-Arie R, Dinoor A, Prusky D (2000) Resistance of gibberellin-treated persimmon fruit to Alternaria alternata arises from the reduced ability of the fungus to produce endo-1,4-β-glucanase. Phytopathology 90:1256–1262

    Article  CAS  PubMed  Google Scholar 

  • Eshel D, Lichter A, Dinoor A, Prusky D (2002a) Characterization of Alternaria alternata glucanase genes expressed during infection of resistant and susceptible persimmon fruits. Mol Plant Pathol 3:347–358

    Article  CAS  PubMed  Google Scholar 

  • Eshel D, Miyara I, Ailing T, Dinoor A, Prusky D (2002b) pH regulates endoglucanase expression and virulence of Alternaria alternata in persimmon fruit. Mol Plant-Microbe Interact 15:774–779

    Article  CAS  PubMed  Google Scholar 

  • Evans N, Mc Roberts N, Hill RA, Marshall G (1996) Phytotoxin production by Alternaria linicola and phytoalexin production by the linseed host. Ann Appl Biol 129:415–431

    Article  CAS  Google Scholar 

  • Fan CY, Köller W (1998) Diversity of cutinases from plant pathogenic fungi: differential and sequential expression of cutinolytic esterases by Alternaria brassicicola. FEMS Microbiol Lett 158:33–38

    Article  CAS  Google Scholar 

  • Fill BK, Petersen K, Petersen M, Mundy J (2009) Gene regulation by MAP kinase cascades. Curr Opin Plant Biol 12:615–621

    Article  CAS  Google Scholar 

  • Fujiwara T, Oda K, Yokota S, Takatsuki A, Ikehara Y (1988) Brefeldin A causes disassembly of the golgi complex and accumulation of secretary proteins in the endoplasmic reticulum. J Biol Chem 263:18545–18552

    CAS  PubMed  Google Scholar 

  • Garg S, Dhawan K, Chawla HKL, Nainawatee HS (1999) Alternaria brassicae induced changes in tile activity of cell wall degrading enzymes in leaves of Brassica juncea. Biol Plants 30:387–392

    Google Scholar 

  • Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gechev TS, Gadjev IZ, Hille J (2004) An extensive microarray analysis of AAL-toxin-induced cell death in Arabidopsis thaliana brings new insights into the complexity of programmed cell death in plants. Cell Mol Life Sci 61:1185–1197

    Article  CAS  PubMed  Google Scholar 

  • Gechev T, Ferwerda M, Mehterov N, Laloi C, Qureshi MK, Hille J (2008) Arabidopsis AAL-toxin-resistant mutant atr1 shows enhanced tolerance to programmed cell death induced by reactive oxygen species. Biochem Biophys Res Commun 375:639–644

    Article  CAS  PubMed  Google Scholar 

  • Ghose K, Dey S, Barton H, Loake GJ, Basu D (2008) Differential profiling of selected defense-related genes induced on challenge with Alternaria brassicicola in resistant white mustard and their comparative expression pattern in susceptible Indian mustard. Mol Plant Pathol 9:763–775

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist DG, Ward B, Moussato V, Mirocha CJ (1992) Genetic and physiological response to fumonisins and AAL-toxin by intact tissue of a higher plant. Mycopathologia 117:57–64

    Article  CAS  Google Scholar 

  • Glazebrook J (1999) Genes controlling expression of defense response in Arabidopsis. Curr Opin Plant Biol 2:280–286

    Article  CAS  PubMed  Google Scholar 

  • Gloer JB, Poch GK, Short DM, McCloskey DV (1988) Structure of brassicicolin A: a isocyanide antibiotic from the phylloplane fungus Alternaria brassicicola. J Org Chem 53:3758–3761

    Article  CAS  Google Scholar 

  • Gross H (2007) Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects. Appl Microbiol Biotechnol 75:267–277

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Roberts DW, Renwick JAA (1989) Preparative isolation of destruxins from Metarhizium anisopliae by high performance liquid chromatography. J Liq Chromatogr 12:383–395

    Article  CAS  Google Scholar 

  • Hamel LP, Beaudoin N (2010) Chit oligosaccharide sensing and downstream signaling: contrasted outcomes in pathogenic and beneficial plant–microbe interactions. Planta 232:787–806

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hannun YA (1996) Functions of ceramide in coordinating cellular responses to stress. Science 274:1855–1859

    Article  CAS  PubMed  Google Scholar 

  • Hatta R, Ito K, Hosaki Y, Tanaka T, Tanaka A, Yamamoto M, Akimitsu K, Tsuge T (2002) A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata. Genetics 161:59–70

    PubMed Central  CAS  PubMed  Google Scholar 

  • He C, Rusu AG, Poplawski AM, Irwin JA, Manners JM (1998) Transfer of a supernumerary chromosome between vegetatively incompatible biotypes of the fungus Colletotrichum gloeosporioides. Genetics 150:1459–1466

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hodgkin T, MacDonald MV (1986) The effect of a phytotoxin from Alternaria brassicicola on Brassica pollen. New Phytol 104:631–636

    Article  CAS  Google Scholar 

  • Hwang IS, Hwang BK (2010) The pepper 9-lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. Plant Physiol 152:948–967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Imazaki A, Tanaka A, Harimoto Y, Yamamoto M, Akimitsu K, Park P, Tsuge T (2010) Contribution of peroxisomes to secondary metabolism and pathogenicity in the fungal plant pathogen Alternaria alternata. Eukaryot Cell 9:682–694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Isshiki T, Pearson B, Holbrook S, Doe CQ (2001) Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106:511–521

    Article  CAS  PubMed  Google Scholar 

  • Jejelowo OA, Conn KL, Tewari JP (1991) Relationship between conidial concentration, germling growth and phytoalexin production by Camelina sativa leaves inoculated with Alternaria brassicae. Mycol Res 95:928–934

    Article  CAS  Google Scholar 

  • Jennings DB, Daub ME, Pharr DM, Williamson JD (2002) Constitutive expression of a celery mannitol dehydrogenase in tobacco enhances resistance to the mannitol-secreting fungal pathogen Alternaria alternata. Plant J 32:41–49

    Article  CAS  PubMed  Google Scholar 

  • Johnson RD, Johnson L, Itoh Y, Kodama M, Otani H, Kohmoto K (2000) Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternata apple pathotype whose product is involved in AM-toxin synthesis and pathogenicity. Mol Plant-Microbe Interact 13:742–753

    Article  CAS  PubMed  Google Scholar 

  • Johnson LJ, Johnson RD, Akamatsu H, Salamiah A, Otani H, Kohmoto K, Kodama M (2001) Spontaneous loss of a conditionally dispensable chromosome from the Alternaria alternata apple pathotype leads to loss of toxin production and pathogenicity. Curr Genet 40:65–72

    Article  CAS  PubMed  Google Scholar 

  • Joubert A, Simoneau P, Campion C, Bataille-Simoneau N, IacomiVasilescu B, Poupard P, François JM, Georgeault S, Sellier E, Guillemette T (2011) Impact of the unfolded protein response on the pathogenicity of the necrotrophic fungus Alternaria brassicicola. Mol Microbiol 79:1305–1324

    Article  CAS  PubMed  Google Scholar 

  • Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF (2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci U S A 98:9448–9453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kachroo A, Lapchyk L, Fukushige H, Hildebrand D, Klessig D, Kachroo P (2003a) Plastidial fatty acid signaling modulates salicylic acid- and jasmonic acid-mediated defense pathways in the Arabidopsis ssi2 mutant. Plant Cell 15:2952–2965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kachroo P, Kachroo A, Lapchyk L, Hildebrand D, Klessig DF (2003b) Restoration of defective cross talk in ssi2 mutants: role of salicylic acid, jasmonic acid, and fatty acids in SSI2-mediated signaling. Mol Plant-Microbe Interact 16:1022–1029

    Article  CAS  PubMed  Google Scholar 

  • Kagan IA, Hammerschmidt R (2002) Arabidopsis ecotype variability in camalexin production and reaction to infection by Alternaria brassicicola. J Chem Ecol 28:2121–2140

    Article  CAS  PubMed  Google Scholar 

  • Kanrar S, Venkateswari JC, Kirti PB, Chopra VL (2002) Transgenic expression of hevein, the rubber tree lectin, in Indian mustard confers protection against Alternaria brassicae. Plant Sci 162:441–448

    Article  CAS  Google Scholar 

  • Kannan P, Pandey D, Gupta AK, Punetha H, Taj G, Kumar A (2011) Expression analysis of MAP 2K 9 and MAP K 6 during pathogenesis of Alternaria blight in Arabidopsis thaliana ecotype Columbia. Mol Biol Rep 39:4439–4444

    Article  PubMed  CAS  Google Scholar 

  • Keller NP, Hohn TM (1997) Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21:17–29

    Article  CAS  Google Scholar 

  • Khandelwal A, Kumar A, Banerjee M, Garg GK (2002) Effect of Alternaria pathotoxin(s) on expression of p53- like apoptotic protein in calli and leaves of Brassica campestris. Indian J Exp Biol 40:89–94

    CAS  PubMed  Google Scholar 

  • Kohmoto K, Itoh Y, Shimomura N, Kondoh Y, Otani H, Kodama M, Nishimura S, Nakatsuka S (1993) Isolation and biological activities of two host-specific toxins from the tangerine pathotype of Alternaria alternata. Phytopathology 83:495–502

    Article  CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  CAS  PubMed  Google Scholar 

  • Kusaba M, Tsuge T (1994) Nuclear ribosomal DNA variation and pathogenic specialization in Alternaria fungi known to produce host-specific toxins. Appl Environ Microbiol 60:3055–3062

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kusaba M, Tsuge T (1995) Phylogeny of Alternaria fungi known to produce host-specific toxins on the basis of variation in internal transcribed spacers of ribosomal DNA. Curr Genet 28:491–498

    Article  CAS  PubMed  Google Scholar 

  • Kusaba M, Tsuge T (1997) Mitochondrial DNA variation in host-specific toxin-producing pathogens in the genus Alternaria. Annu Phytopathol Soc Japan 63:463–469

    Article  Google Scholar 

  • Lawrence CB, Singh NP, Qiu J, Gardner RG, Tuzun S (2000) Constitutive hydrolytic enzymes are associated with polygenic resistance of tomato to Alternaria solani and may function as an elicitor release mechanism. Physiol Mol Plant Pathol 57:211–220

    Article  CAS  Google Scholar 

  • Lawrence CB, Mitchel TK, Craven KD, Cho Y, Cramer RA Jr, Kim KH (2008) At Death’s Door: Alternaria pathogenicity mechanisms. Plant Pathol J 24:101–111

    Article  CAS  Google Scholar 

  • Lee SB, Go YS, Bae HJ, Park JH, Cho SH, Cho HJ, Lee DS, Park OK, Hwang I, Suh MC (2009) Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Physiol 150:42–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li HY, Xiao S, Chye ML (2008) Ethylene- and pathogen-inducible Arabidopsis acyl-CoA binding protein 4 interacts with an ethylene-responsive element binding protein. J Exp Bot 59:3997–4006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liebermann B, Nussbaum RP, Günther W (2000) Bicycloalternarenes produced by the phytopathogenic fungus Alternaria alternata. Phytochemistry 55:987–992

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Yang SL, Wang NY, Chung KR (2010) The FUS3 MAPK signaling pathway of the citrus pathogen Alternaria alternata functions independently or cooperatively with the fungal redox-responsive AP1 regulator for diverse developmental, physiological and pathogenic processes. Fungal Genet Biol 47:381–391

    Article  CAS  PubMed  Google Scholar 

  • Lincoln JE, Richael C, Overduin B, Smith K, Bostock R, Gilchrist DG (2002) Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Proc Natl Acad Sci U S A 99:15217–15221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loivamaki M, Stuhrwohldt N, Deeken R, Steffens B, Roitsch T, Hedrich R, Sauter M (2010) A role for PSK signaling in wounding and microbial interactions in Arabidopsis. Physiol Plant 139:348–357

    PubMed  Google Scholar 

  • Lorito M, Woo SL, Garcia I, Colucci G, Harman GE, Pintor-Toro JA, Filippone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F, Fernandez IG (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci U S A 95:7860–7865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lou J, Fu L, Peng Y, Zhou L (2013) Metabolites from Alternaria fungi and their bioactivities. Molecules 18:5891–5935

    Article  PubMed  Google Scholar 

  • Ludwig-Müller J, Pieper K, Ruppel M, Cohen JD, Epstein E, Kiddle G, Bennett R (1999) Indole glucosinolate and auxin biosynthesis in Arabidopsis thaliana L. glucosinolate mutants and the development of the clubroot disease. Planta 208:409–419

    Article  PubMed  Google Scholar 

  • MacKinnon SL, Keifer P, William AA (1999) Components from the phytotoxic extract of Alternaria brassicicola, a black spot pathogen of canola. Photochemistry 51:215–221

    Article  CAS  Google Scholar 

  • Madhani HD, Fink GR (1998) The riddle of MAP kinase signaling specificity. Trends Genet 14:151–155

    Article  CAS  PubMed  Google Scholar 

  • Maekawa N, Yamamoto M, Nishimura S, Kohmoto K, Kuwata M, Watanabe Y (1984) Studies on host-specific AF-toxins produced by Alternaria alternata strawberry pathotype causing Alternaria black spot of strawberry. I. Production of host-specific toxins and their biological activity. Ann Phytopathol Soc Japan 50:600–609

    Article  CAS  Google Scholar 

  • Majeau N, Trudel J, Asselin A (1990) Diversity of cucumber chitinase isoforms and characterization of one seed basic chitinase with lysozyme activity. Plant Sci 68:9–16

    Article  CAS  Google Scholar 

  • Mang HG, Laluk KA, Parsons EP, Kosma DK, Cooper BR, Park HC, AbuQamar S, Boccongelli C, Miyazaki S, Consiglio F, Chilosi G, Bohnert HJ, Bressan RA, Mengiste T, Jenks MA (2009) The Arabidopsis RESURRECTION1 gene regulates a novel antagonistic interaction in plant defense to biotrophs and necrotrophs. Plant Physiol 151:290–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Markham JE, Hille J (2001) Host-selective toxins as agents of cell death in plant–fungus interactions. Mol Plant Pathol 2:229–239

    Article  CAS  PubMed  Google Scholar 

  • Marmath KK, Giri P, Sharma S, Taj G, Kumar A (2013) In-silico interaction studies of Alternaria brassicae toxin destruxin b and potential partners of MAPK4 cascade. Int J Agric Environ Biotechnol 6:203–210

    Google Scholar 

  • Masunaka A, Tanaka A, Tsuge T, Peever TL, Timmer LW, Yamamoto M, Yamamoto H, Akimitsu K (2000) Distribution and characterization of AKT homologs in the tangerine pathotype of Alternaria alternata. Phytopathology 90:762–768

    Article  CAS  PubMed  Google Scholar 

  • Meronuck RA, Steele JA, Mirocha CJ, Christensen CM (1972) Tenuazonic acid, a toxin produced by Alternaria alternata. Appl Microbiol 23:613–617

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mishra MK, Suresh N, Bhat AM, Suryaprakash N, Kumar SS, Kumar A, Jayarama (2011) Genetic molecular analysis of Coffea arabica (Rubiaceae) hybrids using SRAP markers. Rev Biol Trop 59:607–617

    PubMed  Google Scholar 

  • Montemurro N, Visconti A (1992) Alternaria metabolites – chemical and biological data. In: Chelkovski J, Visconti A (eds) Alternaria biology, plant diseases and metabolites. Elsevier, Amsterdam, pp 449–557

    Google Scholar 

  • Mora MM, Earle ED (2001) Resistance to Alternaria brassicicola in transgenic broccoli expressing a Trichoderma harzianum endochitinase gene. Mol Breed 8:1–9

    Article  CAS  Google Scholar 

  • Morita S, Azuma M, Aoba T, Satou H, Narisawa K, Hashiba T (2003) Induced systemic resistance of Chinese cabbage to bacterial leaf spot and Alternaria leaf spot by the root endophytic fungus, Heteroconium chaetospira. J Gen Plant Pathol 69:71–75

    Article  Google Scholar 

  • Multani DS, Meeley RB, Paterson AH, Gray J, Briggs SP, Johal GS (1998) Plant-pathogen microevolution: molecular basis for the origin of a fungal disease in maize. Proc Natl Acad Sci U S A 95:1686–1691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nandi A, Moeder W, Kachroo P, Klessig DF, Shah J (2005) Arabidopsis ssi2-conferred susceptibility to Botrytis cinerea is dependent on EDS5 and PAD4. Mol Plant-Microbe Interact 18:363–370

    Article  CAS  PubMed  Google Scholar 

  • Nishimura S, Kohmoto K (1983) Host-specific toxins and chemical structures from Alternaria species. Annu Rev Phytopathol 21:87–116

    Article  CAS  PubMed  Google Scholar 

  • Nussbaum RI, Guenther W, Heinze S, Liebermann B (1999) New tricycloalternarenes produced by the phytopathogenic fungus Alternaria alternata. Phytochemistry 52:593–599

    Article  CAS  Google Scholar 

  • Ohtani K, Yamamoto H, Akimitsu K (2002) Sensitivity to Alternaria alternata toxin in citrus because of altered mitochondrial RNA processing. Proc Natl Acad Sci U S A 99:2439–2444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oka K, Akamatsub H, Kodamab M, Nakajimab H, Kawadab T, Otani H (2005) Host-specific AB-toxin production by germinating spores of Alternaria brassicicola is induced by a host-derived oligosaccharide. Physiol Mol Plant Pathol 66:12–19

    Article  CAS  Google Scholar 

  • Oliver RP, Ipcho SVS (2004) Arabidopsis pathology breathes new life into the necrotrophs-vs-biotrophs classification of fungal pathogens. Mol Plant Pathol 5:347–352

    Article  CAS  PubMed  Google Scholar 

  • Otani H, Kohmoto K, Kodama M (1995) Alternaria toxins and their effects on host plants. Can J Bot 73:8453–8458

    Article  Google Scholar 

  • Otani H, Kohnobe A, Kodama M, Kohmoto K (1998) Production of a host-specific toxin by germinating spores of Alternaria brassicicola. Physiol Mol Plant Pathol 52:285–295

    Article  CAS  Google Scholar 

  • Pandey D, Kumar A, Garg GK (2001) Antagonism between Alternaria brassicae toxin and zeatin in cell culture of Brassica juncea (L.) Czern and Coss. cv. Divya. Physiol Mol Biol Plants 7:181–184

    Google Scholar 

  • Parada RY, Oka K, Yamagishi D, Kodama M, Otani H (2007) Destruxin B produced by Alternaria brassicae does not induce accessibility of host plants to fungal invasion. Physiol Mol Plant Pathol 71:48–54

    Article  CAS  Google Scholar 

  • Parada RY, Sakuno E, Mori N, Oka K, Egusa M, Kodama M, Otani H (2008) Alternaria brassicae produces a host-specific protein toxin from germinating spores on host leaves. Phytopathology 98:458–463

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC (1998) Phytoalexins from crucifers: mimicking or overcoming plant chemical defenses. Recent Res Dev Phytochem 2:259–267

    Google Scholar 

  • Pedras MSC, Biesenthal CJ (2001) Isolation, structure determination, and phytotoxicity of unusual dioxopiperazines from the phytopathogenic fungus Phoma lingam. Phytochemistry 58:905–909

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Chumala PB (2005) Phomapyrones from blackleg causing phytopathogenic fungi: isolation, structure determination, biosyntheses and biological activity. Phytochemistry 66:81–87

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Okanga FI (1999) Strategies of cruciferous pathogenic fungi: detoxification of the phytoalexin cyclobrassinin by mimicry. J Agric Food Chem 47:1196–1202

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Morales VM, Taylor JL (1994) Phomapyrones: three metabolites from the blackleg fungus. Phytochemistry 36:1315–1318

    Article  CAS  Google Scholar 

  • Pedras MSC, Kahn AQ, Taylor JL (1998) The phytoalexin camalexin is not metabolized by Phoma lingam, Alternaria brassicae, or phytopathogenic bacteria. Plant Sci 139:1–8

    Article  CAS  Google Scholar 

  • Pedras MSC, Zaharia JL, Smith KC, Gai Y, Ward DE (1999) Alternaria blackspot phytotoxins: new strategies for determining specific disease resistance traits. In: Proceedings of the 10th international rapeseed congress, Canberra, Australia, 26–29 September

    Google Scholar 

  • Pedras MSC, Biesenthal CJ, Zaharia IL (2000) Comparison of the phytotoxicity of the phytotoxin destruxin B and four natural analogs. Plant Sci 156:185–192

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Zaharia JL, Gai Y, Zhou Y, Ward DE (2001) In planta sequential hydroxylation and glycosylation of a fungal phytotoxin: avoiding cell death and overcoming the fungal invader. Proc Natl Acad Sci U S A 98:747–752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pedras MSC, Zaharia JL, Ward DE (2002) The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry 59:579–596

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Gadagi RS, Jha M, Sarma-Mamillapalle VK (2007) Detoxification of the phytoalexin brassinin by isolates of Leptosphaeria maculans pathogenic on brown mustard involves an inducible hydrolase. Phytochemistry 68:1572–1578

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Chumala PB, Jin W, Islam MS, Hauck DW (2009) The phytopathogenic fungus Alternaria brassicicola: phytotoxin production and phytoalexin elicitation. Phytochemistry 70:394–402

    Article  CAS  PubMed  Google Scholar 

  • Penninckx IAMA, Eggermont K, Terras FRG, Thomma BPHJ, De Samblanx GW, Buchala A, Metraux JP, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE (2000) Arabidopsis MAP Kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Pitzschke A, Schikora A, Hirt H (2009) MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol 12:421–426

    Article  CAS  PubMed  Google Scholar 

  • Popescu SC, Popescu GV, Synder M, Dinesh-Kumar SP (2008) MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev 23:1–13

    Google Scholar 

  • Popescu SC, Popescu GV, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar SP (2009) MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev 23:80–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rawe HC, Kliebenstein DJ (2010) All Mold Is Not Alike: the importance of intra-specific diversity in necrotrophic plant pathogens. PLoS Pathog 6, e1000759

    Article  CAS  Google Scholar 

  • Robeson DJ, Strobel GA (1981) Alpha-beta-dehydrocurvularin and curvularin from Alternaria cinerariae. Z Naturforsch 36:1081–1083

    Google Scholar 

  • Roby D, Broglie K, Cressman R, Biddle P, Chet I, Broglie R (1990) Activation of a bean chitinase promoter in transgenic tobacco plants by phytopathogenic fungi. Plant Cell 2:999–1008

    Article  PubMed Central  PubMed  Google Scholar 

  • Rostás M, Bennett R, Hilker M (2002) Comparative physiological responses in Chinese cabbage induced by herbivory and fungal infection. J Chem Ecol 28:2449–2463

    Article  PubMed  Google Scholar 

  • Rotem J (1994) The genus Alternaria: biology, epidemiology and pathogenicity. APS Press, St Paul, 326 p

    Google Scholar 

  • Samuels RI, Charnley AK, Renolds SE (1988) Application of reversed-phase HPLC in separation and detection of the cyclodepsipeptide toxins produced by the entomopathogenic fungus Metarhizium anisopliae. J Chromatogr Sci 26:15–19

    Article  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 97:11655–11660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schweizer P, Jeanguenat A, Whitacre D, Métraux JP, Mosinger E (1996) Induction of resistance in barley against Erysiphe graminis f. sp. hordei by free cutin monomers. Physiol Mol Plant Pathol 49:103–120

    Article  CAS  Google Scholar 

  • Sharma N, Rahman MH, Strelkov SE, Thiagarajah M, Bansal VK, Kav NNV (2007) Proteome-level changes in two Brassica napus lines exhibiting differential responses to the fungal pathogen Alternaria brassicae. Plant Sci 172:95–110

    Article  CAS  Google Scholar 

  • Sheen VL, Feng Y, Graham D, Takafuta T, Shapiro SS, Walsh CA (2002a) Filamin A and filamin B are co-expressed within neurons during periods of neuronal migration and can physically interact. Hum Mol Genet 11:2845–2854

    Article  CAS  PubMed  Google Scholar 

  • Sheen J, He P, Shan L, Xiong Y, Tena G, Yoo S, Cho Y, Boudsocq M, Lee H (2002b) Signaling specificity and complexity of MAPK cascades in plant innate immunity. Biol Plant-Microbe Interact 6:1–10

    Google Scholar 

  • Shi LH, Bielawski J, Mu JY, Dong HL, Teng C, Zhang J, Yang XH, Tomishige N, Hanada K, Hannun YA, Zuo JR (2007) Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Res 17:1030–1040

    Article  CAS  PubMed  Google Scholar 

  • Shibuya N, Minami E (2001) Oligosaccharide signaling for defence responses in plant. Physiol Mol Plant Pathol 59:223–233

    Article  CAS  Google Scholar 

  • Shivanna KR, Sawhney VK (1993) Pollen selection for Alternaria resistance in oilseed brassicas: responses of pollen grains and leaves to a toxin of A. brassicae. Theor Appl Genet 86:339–344

    CAS  PubMed  Google Scholar 

  • Spassieva SD, Markham JE, Hille J (2002) The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death. Plant J 32:561–572

    Article  CAS  PubMed  Google Scholar 

  • Stacey G, Shibuya N (1997) Chitin recognition in rice and legumes. Plant Soil 194:161–169

    Article  CAS  Google Scholar 

  • Steele JA, Durbin RD, Uchytil TF, Rich DH (1978) Tentoxin uncompetitive inhibitor of lettuce chloroplast coupling factor-1. Biochim Biophys Acta 501:72–82

    Article  CAS  PubMed  Google Scholar 

  • Taj G, Kumar A, Bansal KC, Garg GK (2004) Introgression of osmotin gene for creation of resistance against Alternaria blight by perturbation of cell cycle machinery. Indian J Biotechnol 3:291–298

    CAS  Google Scholar 

  • Taj G, Agarwal P, Grant M, Kumar A (2010) MAPK machinery in plants. Plant Signal Behav 5:1370–1378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taj G, Agarwal P, Grant M, Kumar A (2011) Co-expression and in-silico interaction studies for inter-linking the activation of mapk3 and lox genes during pathogenesis of Alternaria blight (Alternaria brassicae) in Brassica juncea. J Oilseed Brassica 2:13–20

    Google Scholar 

  • Takaichi M, Oeda K (2000) Transgenic carrots with enhanced resistance against two major pathogens, Erysiphe heraclei and Alternaria dauci. Plant Sci 153:135–144

    Article  CAS  PubMed  Google Scholar 

  • Tanabe K, Nishimura S, Kohmoto K (1988) Pathogenicity of cutinase- and pectic enzymes deficient mutants of Alternaria alternata Japanese pear pathotype. Ann Phytopathol Soc Japan 54:552–555

    Article  CAS  Google Scholar 

  • Tanaka A, Tsuge T (2000) Structural and functional complexity of the genomic region controlling AK-toxin biosynthesis and pathogenicity in the Japanese pear pathotype of Alternaria alternata. Mol Plant-Microbe Interact 13:975–986

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Shiotani H, Yamamoto M, Tsuge T (1999) Insertional mutagenesis and cloning of the genes required for biosynthesis of the host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternata. Mol Plant-Microbe Interact 12:691–702

    Article  CAS  PubMed  Google Scholar 

  • Tena G, Boudsocq M, Sheen J (2011) Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol 14:519–529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Torrekens S, Van Leuven F, Osborn RW, Kester A, Rees SB, Vanderleyden J, Cammue BPA, Broekaert WF (1995) Small cysteine-rich antifungal proteins from radish. Their role in host defense. Plant Cell 7:573–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tewari JP (1983) Cellular alterations in the blackspot of rapeseed caused by Alternaria brassicae. Phytopathology 73:831 (Abstr.)

    Google Scholar 

  • Tewari JP (1991) Structural and biochemical bases of the black spot disease of crucifers. Adv Struc Biol 1:325–349

    Google Scholar 

  • Thaler JS, Owen B, Higgins VJ (2004) The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiol 135:530–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomma BPHJ (2003) Pathogen profile- Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol 4:225–236

    Article  CAS  PubMed  Google Scholar 

  • Thomma BP, Eggermont K, Penninckx IA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A 95:15107–15111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomma BPHJ, Eggermont K, Tierens FMJ, Broekaert WF (1999a) Requirement of functional EIN2 (ethylene insensitive 2) gene for efficient resistance of Arabidopsis thaliana to infection by Botrytis cinerea. Plant Physiol 121:1093–1101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomma BPHJ, Nelissen I, Eggermont K, Broekaert WF (1999b) Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J 19:163–171

    Article  CAS  PubMed  Google Scholar 

  • Thomma BPHJ, Eggermont K, Broekaert WF, Cammue BPA (2000) Disease development of several fungi on Arabidopsis can be reduced by treatment with methyl jasmonate. Plant Physiol Biochem 38:421–427

    Article  CAS  Google Scholar 

  • Thomma BPHJ, Penninckx IAMA, Broekaert WF, Cammue BPA (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68

    Article  CAS  PubMed  Google Scholar 

  • Thuleau P, Graziana A, Rossignol M, Kauss H, Auriol P, Ranjeva R (1988) Binding of the phytotoxin zinniol stimulates the entry of calcium into plant-protoplasts. Proc Natl Acad Sci U S A 85:5932–5935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tierens FMJ, Thomma BPHJ, Bari RP, Garnier M, Eggermont K, Brouwer M, Penninckx IAMA, Broekaert WF, Cammue BPA (2002) Esa1, an Arabidopsis mutant with enhanced susceptibility to a range of necrotrophic fungal pathogens, shows a distorted induction of defense responses by reactive oxygen generated compounds. Plant J 29:131–140

    Article  CAS  PubMed  Google Scholar 

  • Ton J, Van Pelt JA, Van Loon LC, Pieterse CM (2002) Differential effectiveness of salicylate-dependent and jasmonate/ethylene dependent induced resistance in Arabidopsis. Mol Plant-Microbe Interact 15:27–34

    Article  CAS  PubMed  Google Scholar 

  • Trail F, Köller W (1993) Diversity of cutinases from plant pathogenic fungi: purification and characterization of two cutinases from Alternaria brassicicola. Physiol Mol Plant Pathol 42:205–220

    Article  CAS  Google Scholar 

  • Varet A, Parker J, Tornero P, Nass N, Nürnberger T, Dangl JL, Scheel D, Lee J (2002) NHL25 and NHL3, two NDR1/HIN1-like genes in Arabidopsis thaliana with potential role(s) in plant defense. Mol Plant-Microbe Interact 15:608–616

    Article  CAS  PubMed  Google Scholar 

  • Veronese P, Nakagami H, Bluhm B, Abuqamar S, Chen X, Salmeron J, Dietrich RA, Hirt H, Mengiste T (2006) The membrane-anchored Botrytis-induced kinase1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18:257–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walton JD (2000) Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet Biol 30:167–171

    Article  CAS  PubMed  Google Scholar 

  • Wan JR, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang H, Li J, Bostock RM, Gilchrist DG (1996a) Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8:375–391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang W, Jones C, Ciacci-Zanella J, Holt T, Gilchrist DG, Dickman MB (1996b) Fumonisins and Alternaria alternata lycopersici toxins: sphinganine analog mycotoxins induce apoptosis in monkey kidney cells. Proc Natl Acad Sci U S A 93:3461–3465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang L, Tsuda K, Sato M, Cohen JD, Katagiri F, Glazebrook J (2009) Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathol 5, e1000301

    Article  CAS  Google Scholar 

  • Wiermer M, Feys BJ, Parker JE (2005) Plant immunity: the EDS1 regulatory node. Curr Opin Plant Biol 8:383–389

    Article  CAS  PubMed  Google Scholar 

  • Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: what’s in a name? Annu Rev Phytopathol 40:251–285

    Article  CAS  PubMed  Google Scholar 

  • Wood RKS (1973) Specificity in plant diseases. In: Byrde RJW, Cutting CV (eds) Fungal pathogenicity and the plant response. Academic, New York, pp 1–16

    Google Scholar 

  • Wubben JP, Joosten MHAJ, Van Kan JAL, De Wit PJGM (1992) Subcellular localization of plant chitinases and 1,3-beta-glucanases in Cladosporium fulvum (syn. Fulvia fulva) infected tomato leaves. Physiol Mol Plant Pathol 41:23–32

    Article  CAS  Google Scholar 

  • Yao C, Köller W (1994) Diversity of cutinases from plant pathogenic fungi: cloning and sequence analysis of a cutinase gene from Alternaria brassicicola. Physiol Mol Plant Pathol 44:81–92

    Article  CAS  Google Scholar 

  • Yao C, Köller W (1995) Diversity of cutinases from plant pathogenic fungi: different cutinases are expressed during saprophytic and pathogenic stages of Alternaria brassicicola. Mol Plant-Microbe Interact 8:122–130

    Article  CAS  Google Scholar 

  • Zheng ZY, Abu Qamar S, Chen ZX, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Singh Saharan, G., Mehta, N., Meena, P.D. (2016). Phytotoxins. In: Alternaria Diseases of Crucifers: Biology, Ecology and Disease Management. Springer, Singapore. https://doi.org/10.1007/978-981-10-0021-8_10

Download citation

Publish with us

Policies and ethics