Skip to main content

Functions of Maternally-Derived Taurine in Fetal and Neonatal Brain Development

  • Conference paper
Taurine 10

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 975))

Abstract

Taurine (2-aminoethanesulfonic acid) is a sulfur-containing organic acid, which has various physiological functions, including membrane stabilization, cell-volume regulation, mitochondrial protein translocation, anti-oxidative activity, neuroprotection against neurotoxicity and modulation of intracellular calcium levels. Taurine also activates GABAA receptors and glycine receptors. Mammalian fetuses and infants are dependent on taurine delivered from their mothers via either the placenta or their mother’s milk. Taurine is a molecule that links mother-fetus or mother-infant bonding.

This review describes the functions of taurine and the mechanisms of action of taurine in fetal and brain development. Taurine is involved in regulating the proliferation of neural progenitors, migration of newly-generated neurons, and the synapse formation of neurons after migration during fetal and neonatal development. In this review, we also discuss the environmental factors that might influence the functional roles of taurine in neural development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

GABA:

γ-aminobutyric acid

NMDA:

N-methyl-D-aspartate

TauT:

Taurine transporter

VZ:

Ventricular zone

References

  • Avila A, Nguyen L, Rigo J-M (2013a) Glycine receptors and brain development. Front Cell Neurosci 7:184

    Article  PubMed  PubMed Central  Google Scholar 

  • Avila A, Vidal PM, Dear TN et al (2013b) Glycine receptor α2 subunit activation promotes cortical interneuron migration. Cell Rep 4:738–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benítez-Diaz P, Miranda-Contreras L, Mendoza-Briceño RV et al (2003) Prenatal and postnatal contents of amino acid neurotransmitters in mouse parietal cortex. Dev Neurosci 25:366–374

    Article  PubMed  Google Scholar 

  • Brett K, Ferraro Z, Yockell-Lelievre J et al (2014) Maternal–fetal nutrient transport in pregnancy pathologies: the role of the placenta. Int J Mol Sci 15:16153–16185

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown AS (2011) The environment and susceptibility to schizophrenia. Prog Neurobiol 93:23–58

    Article  CAS  PubMed  Google Scholar 

  • Desforges M, Parsons L, Westwood M et al (2013) Taurine transport in human placental trophoblast is important for regulation of cell differentiation and survival. Cell Death Dis 4:e559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ditchfield AM, Desforges M, Mills TA et al (2015) Maternal obesity is associated with a reduction in placental taurine transporter activity. Int J Obes 39:557–564

    Article  CAS  Google Scholar 

  • Flint AC, Liu X, Kriegstein AR (1998) Nonsynaptic glycine receptor activation during early neocortical development. Neuron 20:43–53

    Article  CAS  PubMed  Google Scholar 

  • Furukawa T, Yamada J, Akita T et al (2014) Roles of taurine-mediated tonic GABAA receptor activation in the radial migration of neurons in the fetal mouse cerebral cortex. Front Cell Neurosci 8:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    Article  PubMed  Google Scholar 

  • Harris AR, Trudell JR, Mihic JS (2008) Ethanol’s molecular targets. Sci Signal 1:re7

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayes KC, Carey RE, Schmidt SY (1975) Retinal degeneration associated with taurine deficiency in the cat. Science 188:949–951

    Article  CAS  PubMed  Google Scholar 

  • Hayes KC, Stephan ZF, Sturman JA (1980) Growth depression in taurine-depleted infant monkeys. J Nutr 110:2058–2064

    CAS  PubMed  Google Scholar 

  • Heck N, Kilb W, Reiprich P et al (2007) GABA-A receptors regulate neocortical neuronal migration in vitro and in vivo. Cereb Cortex 17:138–148

    Article  PubMed  Google Scholar 

  • Heller-Stilb B, Van Royen C, Rascher K et al (2002) Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEB J 16:93–95

    Google Scholar 

  • Huxtable RJ (1989) Taurine in the central nervous system and the mammalian actions of taurine. Prog Neurobiol 32:471–533

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Kimura Y, Uozumi Y et al (2008) Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol 44:927–937

    Article  CAS  PubMed  Google Scholar 

  • Kontro P, Oja SS (1987a) Glycinergic systems in the brain stem of developing and adult mice: effects of taurine. Int J Dev Neurosci 5:461–470

    Article  CAS  PubMed  Google Scholar 

  • Kontro P, Oja SS (1987b) Co-operativity in sodium-independent taurine binding to brain membranes in the mouse. Neuroscience 23:567–570

    Article  CAS  PubMed  Google Scholar 

  • Lambert IH, Kristensen DM, Holm JB, Mortensen OH (2014) Physiological role of taurine—from organism to organelle. Acta Physiol (Oxf) 213:191–212

    Article  Google Scholar 

  • Linne ML, Jalonen TO, Saransaari P, Oja SS (1996) Taurine-induced single-channel currents in cultured rat cerebellar granule cells. Adv Exp Med Biol 403:455–462

    Article  CAS  PubMed  Google Scholar 

  • Malminen O, Kontro P (1986) Modulation of the GABA-benzodiazepine receptor complex by taurine in rat brain membranes. Neurochem Res 11:85–94

    Article  CAS  PubMed  Google Scholar 

  • Manent JB, Jorquera I, Mazzucchelli I et al (2007) Fetal exposure to GABA-acting antiepileptic drugs generates hippocampal and cortical dysplasias. Epilepsia 48:684–693

    Article  CAS  PubMed  Google Scholar 

  • Mihic SJ, Ye Q, Wick MJ et al (1997) Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389:385–389

    Article  CAS  PubMed  Google Scholar 

  • Okumura N, Ohtsuki S, Kameyama A (1960) Studies on free amino acids in human brain. J Biochem 47:315–320

    Article  Google Scholar 

  • Palackal T, Moretz R, Wisniewski H, Sturman J (1986) Abnormal visual cortex development in the kitten associated with maternal dietary taurine deprivation. J Neurosci Res 15:223–239

    Article  CAS  PubMed  Google Scholar 

  • Rho JM, Donevan SD, Rogawski MA (1996) Direct activation of GABAA receptors by barbiturates in cultured rat hippocampal neurons. J Physiol 497(Pt 2):509–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley EP, McGee CL (2005) Fetal alcohol spectrum disorders: an overview with emphasis on changes in brain and behavior. Exp Biol Med 230:357–365

    Article  CAS  Google Scholar 

  • Rivera HM, Christiansen KJ, Sullivan EL (2015) The role of maternal obesity in the risk of neuropsychiatric disorders. Front Neurosci 9:1–16

    Article  Google Scholar 

  • Schmitt A, Malchow B, Hasan A, Falkai P (2014) The impact of environmental factors in severe psychiatric disorders. Front Neurosci 8:1–10

    Article  Google Scholar 

  • Shivaraj MC, Marcy G, Low G et al (2012) Taurine induces proliferation of neural stem cells and synapse development in the developing mouse brain. PLoS One 7:e42935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St. Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F, Zheng X, Gu N, Feng G, Sham P, He L (2005) Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA 294:557–562

    Article  CAS  PubMed  Google Scholar 

  • Sturman JA (1982) Origin of taurine in developing rat brain. Brain Res 254:111–128

    Google Scholar 

  • Sturman JA (1988) Taurine in development. J Nutr 118:1169–1176

    CAS  PubMed  Google Scholar 

  • Sturman JA, Gaull GE (1975) Taurine in the brain and liver of the developing human and monkey. J Neurochem 25:831–835

    Article  CAS  PubMed  Google Scholar 

  • Sturman JA, Rassin DK, Gaull EG (1977a) Taurine in developing rat brain: transfer of [35S] taurine to pups via the milk. Pediatr Res 11:28–33

    CAS  PubMed  Google Scholar 

  • Sturman JA, Rassin DK, Gaull GE (1977b) Taurine in developing rat brain: maternal-fetal transfer of [35 S] taurine and its fate in the neonate. J Neurochem 28:31–39

    Article  CAS  PubMed  Google Scholar 

  • Sturman JA, Rassin DK, Gaull GE (1977c) Taurine in development. Life Sci 21:1–22

    Article  CAS  PubMed  Google Scholar 

  • Sturman JA, Moretz RC, French JH, Wisniewski HM (1985) Taurine deficiency in the developing cat: persistence of the cerebellar external granule cell layer. J Neurosci Res 13:405–416

    Article  CAS  PubMed  Google Scholar 

  • Sturman JA, Gargano AD, Messing JM, Imaki H (1986) Feline maternal taurine deficiency: effect on mother and offspring. J Nutr 116:655–667

    CAS  PubMed  Google Scholar 

  • Susser E, Hoek HW, Brown A (1998) Neurodevelopmental disorders after prenatal famine. Am J Epidemiol 147:213–216

    Article  CAS  PubMed  Google Scholar 

  • Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467:60–79

    Article  CAS  PubMed  Google Scholar 

  • Tan S, Kalloniatis M, Sturm K et al (1998) Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex. Neuron 21:295–304

    Article  CAS  PubMed  Google Scholar 

  • Tochitani S, Sakata-Haga H, Fukui Y (2010) Embryonic exposure to ethanol disturbs regulation of mitotic spindle orientation via GABAA receptors in neural progenitors in ventricular zone of developing neocortex. Neurosci Lett 472:128–132

    Article  CAS  PubMed  Google Scholar 

  • Underwood MA, Gilbert WM, Sherman MP (2005) Amniotic fluid: not just fetal urine anymore. J Perinatol 25:341–348

    Article  PubMed  Google Scholar 

  • Wharton BA, Morley R, Isaacs EB et al (2004) Low plasma taurine and later neurodevelopment. Arch Dis Child Fetal Neonatal Ed 89:F497–F498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J-Y, Prentice H (2010) Role of taurine in the central nervous system. J Biomed Sci 17(Suppl 1):S1

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu MQ, Sun WS, Liu BX et al (2009) Prenatal malnutrition and adult Schizophrenia: further evidence from the 1959–1961 chinese famine. Schizophr Bull 35:568–576

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye GL, Tse ACO, Yung WH (1997) Taurine inhibits rat substantia nigra pars reticulata neurons by activation of GABA- and glycine-linked chloride conductance. Brain Res 749:175–179

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Fukuda S, Tozuka Y et al (2004) Developmental shift in bidirectional functions of taurine-sensitive chloride channels during cortical circuit formation in postnatal mouse brain. J Neurobiol 60:166–175

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges Grants-in-Aid for Young Scientists (B)#21791035 and #23791227, and for Scientific Research (C) #26461629 from the Japan Society for the Promotion of Science for the preparation of this manuscript. The content of this review is solely the responsibility of the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiro Tochitani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this paper

Cite this paper

Tochitani, S. (2017). Functions of Maternally-Derived Taurine in Fetal and Neonatal Brain Development. In: Lee, DH., Schaffer, S.W., Park, E., Kim, H.W. (eds) Taurine 10. Advances in Experimental Medicine and Biology, vol 975. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1079-2_2

Download citation

Publish with us

Policies and ethics