Skip to main content

Is Taurine a Biomarker in Autistic Spectrum Disorder?

  • Conference paper
Taurine 10

Abstract

Taurine is a sulfur-containing amino acid which is not incorporated into protein. However, taurine has various critical physiological functions including development of the eye and brain, reproduction, osmoregulation, and immune functions including anti-inflammatory as well as anti-oxidant activity. The causes of autistic spectrum disorder (ASD) are not clear but a high heritability implicates an important role for genetic factors. Reports also implicate oxidative stress and inflammation in the etiology of ASD. Thus, taurine, a well-known antioxidant and regulator of inflammation, was investigated here using the sera from both girls and boys with ASD as well as their siblings and parents. Previous reports regarding taurine serum concentrations in ASD from various laboratories have been controversial. To address the potential role of taurine in ASD, we collected sera from 66 children with ASD (males: 45; females: 21, age 1.5–11.5 years, average age 5.2 ± 1.6) as well as their unaffected siblings (brothers: 24; sisters: 32, age 1.5–17 years, average age 7.0 ± 2.0) as controls of the children with ASD along with parents (fathers: 49; mothers: 54, age 28–45 years). The sera from normal adult controls (males: 47; females: 51, age 28–48 years) were used as controls for the parents. Taurine concentrations in all sera samples were measured using high performance liquid chromatography (HPLC) using a phenylisothiocyanate labeling technique. Taurine concentrations from female and male children with ASD were 123.8 ± 15.2 and 145.8 ± 8.1 μM, respectively, and those from their unaffected brothers and sisters were 142.6 ± 10.4 and 150.8 ± 8.4 μM, respectively. There was no significant difference in taurine concentration between autistic children and their unaffected siblings. Taurine concentrations in children with ASD were also not significantly different from their parents (mothers: 139.6 ± 7.7 μM, fathers: 147.4 ± 7.5 μM). No significant difference was observed between adult controls and parents of ASD children (control females: 164.8 ± 4.8 μM, control males: 163.0 ± 7.0 μM). However, 21 out of 66 children with ASD had low taurine concentrations (<106 μM). Since taurine has anti-oxidant activity, children with ASD with low taurine concentrations will be examined for abnormal mitochondrial function. Our data imply that taurine may be a valid biomarker in a subgroup of ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASD:

Autistic spectrum disorder

PITC:

Phenylisothiocyanate

HPLC:

High performance liquid chromatography

References

  • Aldred S, Moore KM, Fitzgerald M, Waring RH (2003) Plasma amino acid levels in children with autism and their families. J Autism Dev Disord 33(1):93–97

    Article  PubMed  Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders: DM5, 5th edn. Washington, DC

    Book  Google Scholar 

  • Arnold GL, Hyman SL, Mooney RA, Kirby RS (2003) Plasma amino acids profiles in children with autism: potential risk of nutritional deficiencies. J Autism Dev Disord 33(4):449–454

    Article  PubMed  Google Scholar 

  • Ashwood P, Willis S, Van De Water J (2006) The immune response in autism: a new frontier for autism research. J Leukoc Biol 80:1–15

    Article  CAS  PubMed  Google Scholar 

  • Bolte S, Poustka F (2002) The relation between general cognitive level and adaptive behavior domains in individuals with autism with and without co-morbid mental retardation. Child Psychiatry Hum Dev 33(2):165–172

    Article  PubMed  Google Scholar 

  • Bourgeron T (2016) Current knowledge on the genetics of autism and propositions for future research. C R Biol 339(7–8):300–307. doi:10.1016/j.crvi.2016.05.004

    Article  PubMed  Google Scholar 

  • CDC (2014) Community report on autism, https:\\www.cdc.gov/ncbddd/autism/states/comm_report_autism_2014.pdf

  • Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathophysiology 13:171–181

    Article  CAS  PubMed  Google Scholar 

  • Chawarska K, Shic F, Macari S, Campbell DJ, Brian J, Landa R, Hutman T, Nelson CA, Oznoff S, Tager-Flusberg H, Young GS (2014) 18-month predictors of later outcomes in younger siblings of children with autism spectrum disorder: a baby siblings research consortium study. J Am Acad Child Adolesc Psychiatry 53(12):1317–1327

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen IL (2003) Criterion-related validity of the PDD Behavior Inventory. J Autism Dev Disord 33(1):47–53

    Article  PubMed  Google Scholar 

  • Cohen IL, Schmidt-Lackner S, Romanczyk R, Sudhalter V (2003) The PDD Behavior Inventory: a rating scale for assessing response to intervention in children with pervasive developmental disorder. J Autism Dev Disord 33(1):31–45

    Article  PubMed  Google Scholar 

  • Cohen IL, Liu X, Hudson M, Gillis J, Cavalari RNS, Romanczyk RG, Karmel BZ, Gardner JM (2016) Using the PDD Behavior Inventory as a level 2 screener: a classification and regression trees analysis. J Autism Dev Disord 46:3006–3022

    Article  PubMed  Google Scholar 

  • Erickson CA, Early M, Stigler KA, Wink LK, Mullett JE, McDougle CJ (2011) An open-label naturalistic pilot study of acamprosate in youth with autistic disorder. J Child Adolesc Psychopharmacol 21(6):565–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frye RE, Rossignol DA (2011) Mitochondrial dysfunction can connect the diverse medical symptoms associated with autism spectrum disorders. Pediatr Res 69(5):41R–47R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaugler T, Klei L, Sanders S, Bodea C, Goldberg AP, Lee AB, Mahajan M, Manaa D, Pawitan Y, Reicher J, Ripke S, Sandin S, Sklar P, Svantesson O, Reichenberg A, Hultman CM, Devlin B, Roeder K, Buxbaum JD (2014) Most genetic risk for autism resides with common variation. Nat Genet 46:881–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geier DA, Kern JK, Garver CR, Adams JB, Audhya T, Geier MR (2009) A prospective study of transsulfuration biomarkers in autistic disorders. Neurochem Res 34:386–393

    Article  CAS  PubMed  Google Scholar 

  • Geschwind DH, State MW (2015) Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol 14(11):1109–1120

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghabizadeh A (2013) Increased glutamate and homocysteine and decreased glutamine levels in autism: a review and strategies for future studies of amino acids in autism. Dis Markers 35(5):281–186

    Article  Google Scholar 

  • Giulivi C, Zhang YF, Omanska-Klusek A, Ross-Inta C, Wong S, Herts-picciotto I, Tassone F, Pessah IN (2011) Mitochondrial dysfunction in autism. JAMA 304(21):2389–2396

    Article  Google Scholar 

  • Hampson DR, Blatt GJ (2015) Autism spectrum disorders and neuropathology of the cerebellum. Front Neurosci 9:1–16

    Article  Google Scholar 

  • Huxtable R (1999) Expanding the circle 1975–1999: Sulfur biochemistry and insight on the biological functions of taurine. Adv Exp Med Biol 483:1–25

    Google Scholar 

  • Jong CJ, Azuma J, Schaffer SW (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42:2223–2232

    Article  CAS  PubMed  Google Scholar 

  • Junyent F, Utrera J, Romero R, Pallas M, Camins A, Duque D, Auladell C (2009) Prevention of epilepsy by taurine treatment in mice experimental model. J Neurosci Res 87:1500–1508

    Article  CAS  PubMed  Google Scholar 

  • Kern JK, Geier DA, Adams JB, Garver CR, Audhya T, Geier MR (2011) A clinical trial of glutathione supplementation in autism spectrum disorders. Med Sci Monit 17(12):CR677–CR682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord C, Rutter M, Le Couteur A (1994) Autism diagnostic interview-a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 24:659–685

    Article  CAS  PubMed  Google Scholar 

  • Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore PC, Pickeles A, Rutter M (2000) The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30:205–223

    Article  CAS  PubMed  Google Scholar 

  • Mavel S, Nadal-Desbarats L, Blasco H, Bonnet-Brilhault F, Barthelemy C, Montigny F, Sarda P, Laumonnier F, Vourc’h P, Andres CR, Emond P (2013) 1H-13C NMR-based urine metabolic profiling in autism spectrum disorders. Talanta 114:95–102

    Article  CAS  PubMed  Google Scholar 

  • Ming X, Stein TP, Barnes V, Rhodes N, Guo L (2012) Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Preteome Res 11(12):5856–5862

    Article  CAS  Google Scholar 

  • Moreno H, Borjas L, Arrieta A, Saez L, Prassad A, Estevez J, Bonilla E (1992) Clinical heterogeneity of the autistic syndrome: a study of 60 families. Investig Clin 33(1):13–31

    CAS  Google Scholar 

  • Moreno-Fuenmayer H, Borjas L, Arrieta A, Valera V, Socorro-Candanoza L (1996) Plasma excitatory amino acids in autism. Investig Clin 37(2):113–128

    Google Scholar 

  • Nakagawa Y, Chiba K (2016) Involvement of neuroinflammation during brain development in social cognitive deficits in autism spectrum disorder and schizophrenia. J Pharmacol Exp Ther 358(3):504–515

    Article  CAS  PubMed  Google Scholar 

  • Naviaux JC, Schuchbauer MA, Li K, Wang L, Robrough VB, Powell SB, Naviaux RK (2014) Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipuinergic therapy. Transl Psychiatry 4:e400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira G, Diogo L, Ganzina M, Garcia P, Ataide A, Marques C, Miguel T, Borges L, Omcemte AM, Oliveira CR (2005) Mitochondrial dysfunction in autism spectrum disorders: a population-based study. Dev Med Child Neurol 47:185–189

    Article  CAS  PubMed  Google Scholar 

  • Onore C, Careaga M, Ashwood P (2012) The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun 26:383–392

    Article  CAS  PubMed  Google Scholar 

  • Ozonoff S, Young GS, Carter A et al (2011) Recurrence risk for autism spectrum disorders: a baby siblings research consortium study. Pediatrics 128:e488–e495

    PubMed  PubMed Central  Google Scholar 

  • Park E, Quinn MR, Wright CE, Schuller-Levis GB (1993) Taurine chloramine inhibits the synthesis of nitric oxide and the release of tumor factor in activated RAW 264.7 cells. J Leukoc Biol 54:119–124

    CAS  PubMed  Google Scholar 

  • Park E, Schuller-Levis GB, Quinn MR (1995) Taurine chloramine inhibits production of nitric oxide and TNF-α in activated RAW 264.7 cells by mechanisms that induce transcriptional and translational events. J Immunol 154:4778–4784

    CAS  PubMed  Google Scholar 

  • Park E, Alberti J, Quinn MR, Schuller-Levis GB (1998) Taurine chloramine inhibits the production of superoxide anion, IL-6 and IL-8 in activated human polymorphonuclear leukocytes. In: Schaffer S, Lombardini JB, Huxtable RJ (eds) Taurine 3 cellular and regulatory mechanisms. Plenum Press, New York, pp 177–182

    Google Scholar 

  • Park E, Jia J, Quinn MR, Schuller-Levis G (2002) Taurine chloramine inhibits lymphocyte proliferation and decreases cytokine production in activated human leukocytes. Clin Immunol 102:179–184

    Article  CAS  PubMed  Google Scholar 

  • Park E, Park SY, Dobkin C, Schuller-Levis G (2014) Development of a novel cysteine sulfinic acid decarboxylase knockout mouse: dietary taurine reduces neonatal mortality. J Amino Acids 2014:346809

    Article  PubMed  PubMed Central  Google Scholar 

  • Parvez S, Tabassum H, Banerjee BD, Raisuddin S (2008) Taurine prevents tamoxifen-induced mitochondrial oxidative damage in mice. Basic Clin Pharmacol Toxicol 102:382–387

    Article  CAS  PubMed  Google Scholar 

  • Patterson PH (2011) Maternal infection and immune involvement in autism. Trends Mol Med 17:389–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossignol DA, Frye RE (2012) Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry 17(3):290–314

    Article  CAS  PubMed  Google Scholar 

  • Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A (2014) The familial risk of autism. JAMA 311(17):1770–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuller-Levis GB, Park E (2003) Taurine: new implications for an old amino acid. FEMS Microbiol Lett 226:195–202

    Article  CAS  PubMed  Google Scholar 

  • Schuller-Levis G, Park E (2006) Is taurine a biomarker? Adv Clin Chem 41:1–21

    Article  CAS  PubMed  Google Scholar 

  • Schuller-Levis G, Gordon RE, Park E, Pendino KJ, Laskin D (1995) Taurine protects rat bronchioles from acute ozone-induced lung inflammation and hyperplasia. Exp Lung Res 21:877–888

    Article  CAS  PubMed  Google Scholar 

  • Schuller-Levis G, Gordon R, Wang C, Park S, Park E (2009) Protection of bleomycin-induced fibrosis and inflammation by taurine. Int Immunopharmacol 9:971–977

    Article  CAS  PubMed  Google Scholar 

  • Sealey LA, Hughes BW, Sriskanda AN, Guest JR, Gibson AD, Johnson-William L, Pace DG, Bagasra O (2016) Environmental factors in the development of autism spectrum disorders. Environ Int 88:288–298

    Article  CAS  PubMed  Google Scholar 

  • Shetewy A, Shimada-Takaura K, Warner D, Jong CJ, Mehdi AB, Alexeyev M, Takahashi K, Schaffer SW (2016) Mitochondrial defects associated with β-alanine toxicity: relevance to hyper-beta-alaninemia. Mol Cell Biochem 416(1–2):11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada K, Jong CJ, Takhashi K, Schaffer SW (2014) Role of ROS production and turnover in the antioxidant acidity of taurine. Adv Exp Med Biol 803:581–596

    Article  Google Scholar 

  • Singh K, Connors SL, Macklin EA, Smith KD, Fahey JW, Talalay P, Zimmerman AW (2014) Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci U S A 111(43):15550–15555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturman J (1993) Taurine in development. Physiol Rev 73(1):119–147

    CAS  PubMed  Google Scholar 

  • Sweeten TL, Bowyer SL, Posey DJ et al (2003) Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders. Pediatrics 112(5):e420

    Article  PubMed  Google Scholar 

  • Tu WJ, Chen H, He J (2012) Application of LC/MS/MS analysis of plasma amino acids profiles in children with autism. J Clin Biochem Nutr 51(3):248–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patient with autism. Ann Neurol 57:67–81

    Article  CAS  PubMed  Google Scholar 

  • Wegiel J, Flory M, Kuchna I, Norwicki K, Ma SY, Wegiel J, Frackowiak J, Mazur-Kolecka B, Wierzba-Bobrowicz T, London E, Wisniewski T, Hof PR, Brown WT (2015) Neuronal nucleus and cytoplasm volume deficit in children with autism and volume increase in adolescents and adults. Acta Neuropathol Commun 3:2

    Article  PubMed  PubMed Central  Google Scholar 

  • White JF (2003) Intestinal pathophysiology in Autism. Exp Biol Med (Maywood) 228(6):639–649

    Article  CAS  Google Scholar 

  • Wink LK, Adams R, Wang Z, Klaunig JE, Plawecki MH, Posey DJ, McDougle CJ, Erickson CA (2016) A randomized placebo-controlled pilot study of N-acetylcysteine in youth with autism spectrum disorder. Mol Autism 7:26. doi:10.1186/s13229-016-0088-6. Ecollection 2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Yap IK, Angley M, Veselkov KA, Holmes E, London JC, Nicholson JK (2010) Uninary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J Proteome Res 9(6):3996–4004

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Office for People with Developmental Disabilities, Albany, NY. We are thankful to Dr. William Levis for discussing the research and reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunkyue Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this paper

Cite this paper

Park, E. et al. (2017). Is Taurine a Biomarker in Autistic Spectrum Disorder?. In: Lee, DH., Schaffer, S.W., Park, E., Kim, H.W. (eds) Taurine 10. Advances in Experimental Medicine and Biology, vol 975. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1079-2_1

Download citation

Publish with us

Policies and ethics