Skip to main content

Role of ROS Production and Turnover in the Antioxidant Activity of Taurine

  • Conference paper
Taurine 9

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 803))

Abstract

Oxidative stress contributes to the development of acute damage to the ischemia-reperfused heart and to ventricular remodeling ending in congestive heart failure, conditions associated with high mortality rates in man. There is evidence that taurine protects against these cardiovascular diseases, in part by limiting the degree of oxidative stress. Among other effects, oxidative stress disrupts myocardial Ca2+ handling, enhances cardiomyocyte loss and initiates a vicious cycle of reactive oxygen species (ROS) generation.

The mechanism by which taurine mediates its antioxidant actions has been an area of active research. Although the actions of taurine have not been quantified, the two principal antioxidant mechanisms of taurine appear to be the suppression of ROS generation by the mitochondrial electron transport chain and the anti-inflammatory effect of taurine chloramine. There is also some data suggesting that taurine might alter the generation of ROS by NADPH oxidase although this idea is controversial. There is also convincing evidence that taurine prevents the loss of antioxidant enzymes, although that effect is likely indirect, as taurine-mediated reductions in ROS levels should also protect the antioxidant enzymes from oxidative damage. The review also emphasizes the role of the large intracellular taurine pool in maintaining normal contractile function and cardiomyocyte viability. Thus, taurine is a semi-essential amino acid in the human heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAT:

Catalase

DHLA:

Dihydrolipoic acid

ETC:

Electron transport chain

G6P:

Glucose-6-phosphate

G6-PD:

Glucose-6-phosphate dehydrogenase

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

GSSG:

Glutathione disulfide

GST:

Glutathione-S-transferase

LA:

α-Lipoic acid

NNT:

Nicotinamide nucleotide transydrogenase

PPP:

Pentose phosphate pathway

Prx3:

Peroxiredoxin-3

RNS:

Reactive nitrogen secies

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SR:

Sarcoplasmic reticulum

Trx:

Thioredoxin

TrxR:

Thioredoxin reductase

References

  • Anand P, Rajakumar D, Jeraud M, Felix AJ, Balasubramanian T (2011) Effects of taurine on glutathione peroxidase, glutathione reductase and reduced glutathione levels in rats. Pak J Biol Sci 14:219–225

    Article  CAS  PubMed  Google Scholar 

  • Anju TR, Babu A, Paulose CS (2009) Superoxide dismutase functional regulation in neonatal hypoxia: effect of glucose, oxygen and epinephrine. Ind J Biochem Biophys 46:166–171

    CAS  Google Scholar 

  • Arouma OI, Halliwell B, Hoey BM, Butler J (1988) The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem J 256:251–255

    Google Scholar 

  • Bakker AJ, Berg HM (2002) Effect of taurine on sarcoplasmic reticulum function and force in skinned fast-twitch skeletal muscle fibres of the rat. J Physiol 538:185–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cassol OJ Jr, Rezin GT, Petronilho FC, Scaini G, Gonçalves CL, Ferreira GK, Roesler R, Schwartsmann G, Dal-Pizzol F, Streck EL (2010) Effects of N-acetylcystaine/deferoxamine, taurine and RC-3095 on respiratory chain complexes and creatine kinase activities in rat brain after sepsis. Neurochem Res 35:515–521

    Article  CAS  PubMed  Google Scholar 

  • Chambers DE, Parks DA, Patterson G, Roy R, McCord JM, Yoshida S, Parmley LF, Downey JM (1985) Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Mol Cell Cardiol 17:145–152

    Article  CAS  PubMed  Google Scholar 

  • Das J, Ghosh J, Manna P, Sil PC (2010) Protective role of taurine against arsenic-induced mitochondria-dependent hepatic apoptosis via the inhibition of PKCδ-JNK pathway. PLoS ONE 5:e12602

    Article  PubMed Central  PubMed  Google Scholar 

  • Das J, Sil PC (2012) Taurine ameliorates alloxan-induced diabetic renal injury, oxidative stress-related signaling pathways and apoptosis in rats. Amino Acids 43:1509–1523

    Article  CAS  PubMed  Google Scholar 

  • Devi SL, Anuradha CV (2010) Mitochondrial damage, cytotoxicity and apoptosis in iron-potentiated alcoholic liver fibrosis: amelioration by taurine. Amino Acids 38:869–879

    Article  Google Scholar 

  • Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47:446–456

    Article  CAS  PubMed  Google Scholar 

  • Doerries C, Grote K, Hilfiker-Kleiner D, Luchtefeld M, Schaefer A, Holland SM, Sorrentino S, Manes C, Schieffer B, Drexler H, Landmesser U (2007) Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circ Res 100:894–903

    Article  CAS  PubMed  Google Scholar 

  • Garcia J, Han D, Sancheti Hm Yap LP, Kaplowitz N, Cadenas E (2010) Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates. J Biol Chem 285:39646–39654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghibu S, Richard C, Vergely C, Zeller M, Cottin Y, Rochette L (2009) Antioxidant properties of an endogenous thiol: alpha-lipotic acid, useful in the prevention of cardiovascular diseases. J Cardiovasc Pharmacol 54:391–398

    Article  CAS  PubMed  Google Scholar 

  • Grieve DJ, Byrne JA, Siva A, Layland J, Johar S, Cave AC, Shah AM (2006) Involvement of the nicotinamide adenosine dinucleotide phosphate oxidase isoform Nox2 in cardiac contractile dysfunction occurring in response to pressure overload. J Am Coll Cardiol 47:817–826

    Article  CAS  PubMed  Google Scholar 

  • Hagar HH (2004) The protective effect of taurine against cyclosporine A-induced oxidative stress and hepatotoxicity in rats. Toxicol Lett 151:335–343

    Article  CAS  PubMed  Google Scholar 

  • Hurd TR, Costa NH, Dahm CC, Beer SM, Brown SE, Filipovska A, Murphy MP (2005) Glutathionylation of mitochondrial proteins. Antioxid Redox Signal 7:999–1010

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Kimura Y, Uozumi Y, Takai M, Muraoka S, Matsuda T, Ueki K, Yoshiyama M, Ikawa M, Okabe M, Schaffer SW, Fujio Y, Azuma J (2008) Taurine deletion caused by knocking out the taurine transporter gene leads to a cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol 44:927–937

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Schaffer S, Azuma J (2014) The effect of taurine on chronic heart failure: actions of taurine against catecholamines and angiotensin II. Amino Acids 46:111–119

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Zhang Y, Dusting GJ (2011) NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 63:218–242

    Article  CAS  PubMed  Google Scholar 

  • Jong CJ, Azuma J, Schaffer SW (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42:2223–2232

    Article  CAS  PubMed  Google Scholar 

  • Kocsis JJ, Kostos VJ, Baskin SI (1976) Taurine levels in the heart tissues of various species. In: Huxtable R, Barbeau A (eds) Taurine. Raven, New York, NY, pp 145–153

    Google Scholar 

  • Khurana SM, Venkataraman K, Hollingsworth A, Piche M, Tai TC (2013) Polyphenols: benefits to the cardiovascular system in health and aging. Nutrients 5:3779–3827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lennie TA, Moser DK, Biddle MJ, Welsh D, Bruckner GG, Thomas DT, Rayens MK, Bailey AL (2013) Nutrition intervention to decrease symptoms in patients with advanced heart failure. Res Nurs Health 36:120–145

    Article  PubMed Central  PubMed  Google Scholar 

  • Li Y, Arnold JM, Pampillo M, Babwah AV, Peng T (2009) Taurine prevents cardiomyocyte death by inhibiting NADPH oxidase-mediated calpain activation. Free Radic Biol Med 46:51–61

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Trush MA (1998) Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem Biophys Res Commun 18:295–299

    Article  Google Scholar 

  • Looi YH, Grieve DJ, Siva A, Walker SJ, Anilkumar N, Cave AC, Marber M, Monaghan MJ, Shah AM (2008) Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension 51:319–325

    Article  CAS  PubMed  Google Scholar 

  • Malireddy S, Kotha SR, Secor JD, Gurney TO, Abbott JL, Maulik G, Maddipati KR, Parinandi NL (2012) Phytochemical antioxidants modulate mammalian cellular epigenome: implications in health and disease. Antioxid Redox Signal 17:327–339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marcinkiewicz J, Kontny E (2014) Taurine and inflammatory diseases. Amino Acids 46:7–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marí M, Morales A, Colell A, García-Ruiz C, Kaplowitz N, Fernández-Checa JC (2013) Mitochondrial glutathione: features, regulation and role in disease. Biochim Biophys Acta 1830:3317–3328

    Article  PubMed Central  PubMed  Google Scholar 

  • Miao J, Zhang J, Zili M, Zheng L (2013) The role of NADPH oxidase in taurine attenuation of Stereptococcus uberis-induced mastitis in rats. Int Immunopharmacol 16:429–435

    Article  CAS  PubMed  Google Scholar 

  • Mozaffari MS, Tan BH, Lucia MA, Schaffer SW (1986) Effect of drug-induced taurine depletion on cardiac contractility and metabolism. Biochem Pharamacol 35:985–989

    Article  CAS  Google Scholar 

  • Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy MP (2012) Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 16:476–495

    Article  CAS  PubMed  Google Scholar 

  • Novo R, Azevedo PS, Minicucci MF, Zornoff LA, Paiva SA (2013) Effect of beta-carotene on oxidative stress and expression of cardiac connexin 43. Arq Bras Cardiol 101:233–239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novotny MJ, Hogan PA, Paley DM, Adams HR (1991) Systolic and diastolic dysfunction of the left ventricle induced by dietary taurine deficiency in cats. Am J Physiol 261:H121–H127

    CAS  PubMed  Google Scholar 

  • Oka S, Hsu CP, Sadoshima J (2012) Regulation of cell survival and death by pyridinediucleotides. Circ Res 111:611–627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pansani MC, Azevedo PS, Murino Rafacho BP, Minicucci MF, Chiuso-Minicucci F, Zorzella-Pezavento SG, Marchini JS, Padovan GJ, Henrique Fernandes AA, Matsubara BB, Matsubara LS, Zornoff LAM, Paiva SAR (2012) Atrophic cardiac remodeling induced by taurine deficiency in Wistar rats. PloS ONE 7:e41439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parvez S, Tabassum H, Banerjee BD, Raisuddin S (2008) Taurine prevents tamoxifen-induced mitochondrial oxidative damage in mice. Basic Clin Pharmacol Toxicol 102:382–387

    Article  CAS  PubMed  Google Scholar 

  • Pasantes-Morales H, Cruz C (1985) Taurine and hypotaurine inhiit light-induced lipid peroxidation and protect rod outer segment structure. Brain Res 330:154–157

    Article  CAS  PubMed  Google Scholar 

  • Pastore A, Piemonte F (2013) Protein glutathionylation in cardiovascular diseases. Int J Mol Sci 14:20845–208476

    Article  PubMed Central  PubMed  Google Scholar 

  • Pion PD, Kittleson MD, Thomas WP, Skiles ML, Rogers QR (1992) Clinical findings in cats with dilated cardiomyopathy and relationship of findings to taurine deficiency. J Am Vet Med Assoc 201:267–274

    CAS  PubMed  Google Scholar 

  • Pipaliya H, Vaghasiya J (2012) Cardio protective effect of vitamin A against isoproterenol-induced myocardial infarction. J Nutr Sci Vitaminol 58:402–407

    Article  CAS  PubMed  Google Scholar 

  • Pushpakiran G, Mahalakshmi K, Anuradha CV (2004) Taurine restores ethanol-induced depletion of antioxidants and attenuates oxidative stress in rat tissues. Amino Acids 27:91–96

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG, Yang KS, Kang SW, Woo HA, Chiang TS (2005) Controlled elimination of intracellular H2O2: regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid Redox Signal 7:619–626

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Sill PC (2012) Tertiary butyl hydroperoxide induced oxidative damage in mice erythrocytes: protection by taurine. Pathophysiology 19:137–148

    Article  CAS  PubMed  Google Scholar 

  • Sahin MA, Yucel O, Guler A, Doganci S, Jahollari A, Cingoz F, Arslan S, Gamsizkan M, Yaman H, Demirkilic U (2011) Is there any cardioprotective role of taurine during cold ischemic period following global myocardial ischemic period following global myocardial ischemia. J Cardiothorac Surg 6:31

    Article  PubMed Central  PubMed  Google Scholar 

  • Satoh H, Sperelakis N (1993) Effect of taurine on Ca2+ currents in young embryonic chick cardiomyocytes. Eur J Pharmacol 231:443–449

    Article  CAS  PubMed  Google Scholar 

  • Schaffer SW, Jong CJ, Ito T, Azuma J (2014) Effect of taurine on ischemia-reperfusion injury. Amino Acids 46:21–30

    Article  CAS  PubMed  Google Scholar 

  • Schaffer S, Solodushko V, Azuma J (2000) Taurine-deficient cardiomyopathy: role of phospholipids, calcium and osmotic stress. Adv Exp Med Biol 483:57–69

    Article  CAS  PubMed  Google Scholar 

  • Sevin G, Ozsarlak-Sozer G, Keles D, Gokce G, Reel B, Ozgur HH, Oktay G, Kerry Z (2013) Taurine inhibits increased MMP-2 expression in a model of oxidative stress induced by glutathione depletion in rabbit heart. Eur J Pharmacol 706:98–106

    Article  CAS  PubMed  Google Scholar 

  • Shiny KS, Kumar SH, Farbin KH, Anandan R, Devadasan K (2005) Protective effect of taurine on myocardial antioxidant status in isoprenaline-induced myocardial infarction in rats. J Pharm Pharmacol 57:1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Steele DS, Smith GL, Miller DJ (1990) The effects of taurine on Ca2+ uptake by the sarcoplasmic reticulum and Ca2+ sensitivity of chemically skinned rat heart. J Physiol 422:499–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Surai PF, Speake BK, Noble RC, Sparks NH (1999) Tissue-specific antioxidant profiles and susceptibility to lipid peroxidation of the newly hatched chick. Biol Trace Elem Res 68:63–78

    Article  CAS  PubMed  Google Scholar 

  • Tabassum H, Rehman H, Banerjee BD, Raisuddin Sm Parvez S (2006) Attenuation of tamoxifen-induced hepatotoxicity by taurine in mice. Clin Chim Acta 370:129–136

    Article  CAS  PubMed  Google Scholar 

  • Taziki S, Sattari MR, Eghbal MA (2013) Mechanisms of trazodone-induced cytotoxicity and the protective effects of melatonin and/or taurine toward freshly isolated rat hepatocytes. J Biochem Mol Toxicol 27:457–462

    CAS  PubMed  Google Scholar 

  • Terentyev D, Gyorke I, Belevych AE, Terentyeva R, Sridhar A, Nishijima Y, Carcache de Blanco E, Khanna S, Sen CK, Cardounel AJ, Carnes CA, Gyorke S (2008) Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circ Res 103:1466–1472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsutsui H, Ide T, Kinugawa S (2006) Mitochondrial oxidative stress, DNA damage and heart failure. Antioxid Redox Signal 8:1737–1744

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui H, Kinugawa S, Matsushima S (2009) Mitochondrial oxidative stress and dysfunction in myocardial remodeling. Cardiovasc Res 81:449–456

    Article  CAS  PubMed  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turrens JF (2004) Oxidative stress and antioxidant defenses: a target for the treatment of diseases caused by parasitic protozoa. Mol Axpects Med 25:211–220

    Article  CAS  Google Scholar 

  • Ueno T, Iguro Y, Yotsuoto G, Fukumoto Y, Nakamura K, Miyamoto TA, Sakata R (2007) Taurine at early reperfusion significantly reduces myocardial damage and preserves cardiac function in the isolated rat heart. Resuscitation 73:287–295

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  • Voutilainen S, Nurmi T, Mursu J, Rissanen TH (2006) Carotenoids and cardiovascular health. The American Journal of Clinical Nutrition 83:1265–1271

    CAS  PubMed  Google Scholar 

  • Yang Q, Yang J, Wu G, Feng Y, Lv Q, Lin S, Hu J (2013) Effects of taurine on myocardial cGMP/cAMP ratio, antioxidant ability, and ultrastructure in cardiac hypertrophy rats induced by isoproterenol. Adv Exp Med Biol 776:217–229

    Article  CAS  PubMed  Google Scholar 

  • Yin F, Sancheti H, Cadenas E (2012) Mitochondrial thiols in the regulation of cell death pathways. Antioxid Redox Signal 17:1714–1727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71:310–321

    Article  CAS  PubMed  Google Scholar 

  • Zimmer HG (1992) The oxidative pentose phosphate pathway in the heart: regulation, physiological significance, and clinical implications. Basic Res Cardiol 87:303–316

    Article  CAS  PubMed  Google Scholar 

  • Zugno AI, Scherer EB, Mattos C, Ribeiro CA, Wannmacher CM, Wajner M, Wyse AT (2007) Evidence that the inhibitory effects of guanidinoacetate on the activities the respiratory chain, Na+, K+-ATPase and creatine kinase can be differentially prevented by taurine and vitamins E and C administration in rat striatum in vivo. Biochim Biophys Acta 1772:563–569

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from Taisho Pharmaceutical Co.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Schaffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Shimada, K., Jong, C.J., Takahashi, K., Schaffer, S.W. (2015). Role of ROS Production and Turnover in the Antioxidant Activity of Taurine. In: Marcinkiewicz, J., Schaffer, S. (eds) Taurine 9. Advances in Experimental Medicine and Biology, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-15126-7_47

Download citation

Publish with us

Policies and ethics