Skip to main content

Travelling Bacteria: Phoresy

  • Chapter
  • First Online:
Invertebrate Bacteriology
  • 751 Accesses

Abstract

Examples of phoretic links with bacteria observed in some invertebrate groups are reviewed. They include insects transporting bacteria, symbionts horizontal transmission and the insect-killing bacteria associated to entomopathogenic nematodes. Other bacterial phoresis are reviewed for slug parasites, grass galling nematodes and microbiovorous species, and anellids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, A. S., et al. (2013). Mountain pine beetles colonizing historical and naïve host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Applied and Environmental Microbiology, 79, 3468–3475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed, M. Z., et al. (2015). The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathogens, 11, e1004672.

    Article  CAS  PubMed Central  Google Scholar 

  • Allaire, S. E., Yates, S. R., Ernst, F. F., & Gan, J. (2002). A dynamic twodimensional system for measuring volatile organic compound volatilization and movement in soils. Journal of Environmental Quality, 31, 1079–1087.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, G. L., Kenney, S. J., Millner, P. D., Beuchat, L. R., & Williams, P. L. (2006). Shedding of foodborne pathogens by Caenorhabditis elegans in compost-amended and unamended soil. Food Microbiology, 23, 146–153.

    Article  PubMed  Google Scholar 

  • Balashov, I. (2006). The origin and evolution of parasitism on terrestrial vertebrates in insects, mites, and ticks. Parazitologiia, 40, 409–424. [in Russian].

    PubMed  Google Scholar 

  • Bertrand, M., et al. (2015). Earthworm services for cropping systems. A review. Agronomy for Sustainable Development, 35, 553–567.

    Article  CAS  Google Scholar 

  • Bilgrami, A. L. (2009). Biological control potentials of predatory nematodes. In A. Ciancio & K. G. Mukerji (Eds.), Integrated management and biocontrol of vegetable and grain crops nematodes (pp. 3–28). Dordrecht: Springer.

    Google Scholar 

  • Bilgrami, A. L., & Jairajpuri, M. S. (1988). Attraction of Mononchoides longicaudatus and M. fortidens (Nematoda: Diplogasteridae) towards prey and factors influencing attraction. Revue de Nematologie, 11, 195–202.

    Google Scholar 

  • Bilgrami, A. L., Gaugler, R., & Brey, C. (2005). Prey preference and feeding behaviour of the diplogastrid predator Mononchoides gaugleri (Nematoda: Diplogastridae). Nematology, 7, 333–342.

    Article  Google Scholar 

  • Binns, E. S. (2008). Phoresy as migration – Some functional aspects of phoresy in mites. Biological Reviews, 57, 561–620.

    Google Scholar 

  • Bird, A. F. (1981). In B. M. Zuckerman & R. A. Rohde (Eds.), Plant parasitic nematodes. New York: Academic, 508 pp.

    Google Scholar 

  • Bird, A. F., & Akhurst, R. J. (1983). The nature of the intestinal vesicle in nematodes of the family Steinernematidae. International Journal of Parasitology, 13, 599–606.

    Article  Google Scholar 

  • Blanchart, E., et al. (1999). Effects of earthworms on soil structure and physical properties. In P. Lavelle, L. Brussaard, & P. Hendrix (Eds.), Earthworm management in tropical agroecosystems (pp. 149–172). Wallingford: CAB International.

    Google Scholar 

  • Boone, C. K., et al. (2013). Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. Journal of Chemical Ecology, 39, 1003–1006.

    Article  CAS  PubMed  Google Scholar 

  • Brune, A. (1998). Termite guts: The world’s smallest bioreactors. Trends in Biotechnology, 16, 16–21.

    Article  CAS  Google Scholar 

  • Caldwell, K. N., Anderson, G. L., Williams, P. L., & Beuchat, L. R. (2003). Attraction of a free-living nematode, Caenorhabditis elegans, to foodborne pathogenic bacteria and its potential as a vector of Salmonella Poona for preharvest contamination of cantaloupe. Journal of Food Protection, 66, 1964–1971.

    PubMed  Google Scholar 

  • Cameron, E. K., Proctor, H. C., & Bayne, E. M. (2013). Effects of an ecosystem engineer on belowground movement of microarthropods. PLoS ONE, 8, e62796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos-Herrera, R., Trigo, D., & Gutiérrez, C. (2006). Phoresy of the entomopathogenic nematode Steinernema feltiae by the earthworm Eisenia fetida. Journal of Invertebrate Pathology, 92, 50–54.

    Article  PubMed  Google Scholar 

  • Campos-Herrera, R., El-Borai, F. E., & Duncan, L. W. (2012). Real-time PCR as an effective technique to assess the impact of phoresy by Paenibacillus sp. bacteria on Steinernema diaprepesi nematodes in nature. Molecular Ecology Resources, 12, 885–893.

    Article  CAS  PubMed  Google Scholar 

  • Cardoza, Y. J., Klepzig, K. D., & Raffa, K. F. (2006). Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecological Entomology, 31, 636–645.

    Article  Google Scholar 

  • Carlson, R. R., & Vidaver, A. K. (1982). Taxonomy of Corynebacterium plant pathogens, including a new pathogen of wheat, based on polyacrylamide gel electrophoresis of cellular proteins. International Journal of Systematic Bacteriology, 32, 315–326.

    Article  CAS  Google Scholar 

  • Chitambar, J. J., & Noffsinger, M. (1989). Predaceous behaviour and life history of Odontopharynx longicaudata (Diplogasteridae). Journal of Nematology, 21, 284–291.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciche, T. A., Kim, K., Kaufmann-Daszczuk, B., Nguyen, K. C. Q., & Hall, D. H. (2008). Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora nematodes. Applied and Environmental Microbiology, 74, 2275–2287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colagiero, M., Rosso, L. C., Ciancio, A., & Murga Gutierrez, S. N. (2011). Observations on the biology of a predatory nematode belonging to Diplogasteridae. Redia, 93, 133–135.

    Google Scholar 

  • Collins, M. D., & Jones, D. (1983). Reclassification of Corynebacterium flaccumfaciens, Corynebacterium betae, Corynebacterium oortii and Corynebacterium poinsettiae in the genus Curtobacterium, as Curtobacteiium flaccumfaciens comb. nov. Journal of General Microbiology, 129, 3545–3548.

    Google Scholar 

  • Coyle, M. B., & Lipsky, B. A. (1990). Coryneform bacteria in infectious diseases: Clinical and laboratory aspects. Clinical Microbiology Reviews, 3, 227–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curcić, B. P., Sudhaus, W., Dimitrijević, R. N., Makarov, S. E., & Tomić, V. T. (2008). Rhabditophanes schneideri (Rhabditida) phoretic on a cave pseudoscorpion. Journal of Invertebrate Pathology, 99, 254–256.

    Article  PubMed  Google Scholar 

  • Currie, C. R., Scott, J. A., Summerbell, R. C., & Malloch, D. (1999). Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature, 398, 701–704.

    Article  CAS  Google Scholar 

  • Daane, L. L., & Häggblom, M. M. (1999). Earthworm egg capsules as vectors for the environmental introduction of biodegradative bacteria. Applied and Environmental Microbiology, 65, 2376–2381.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, M. I., Gillaspie, A. G., Vidaver, A. K., & Harris, R. W. (1984). Clavibacter: A new genus containing some phytopathogenic coryneform bacteria, including Clavibacter xyli subsp. xyli sp. nov., subsp. nov. and Clavibacterxyli subsp. cynodontis subsp. nov., pathogens that cause ratoon stunting disease of sugarcane and bermudagrass stunting disease. International Journal of Systematic Bacteriology, 34, 107–117.

    Article  Google Scholar 

  • Dillon, R. J., & Dillon, V. M. (2004). The gut bacteria of insects: Nonpathogenic interactions. Annual Reviews of Entomology, 49, 71–92.

    Article  CAS  Google Scholar 

  • Dorofeeva, L. V., et al. (2002). Rathayibacter caricis sp. nov. and Rathayibacter festucae sp. nov., isolated from the phyllosphere of Carex sp. and the leaf gall induced by the nematode Anguina graminis on Festuca rubra L., respectively. International Journal of Systematic and Evolutionary Microbiology, 52, 1917–1923.

    CAS  PubMed  Google Scholar 

  • Drake, H. L., & Horn, M. A. (2007). As the worm turns: The earthworm gut as a transient habitat for soil microbial biomes. Annual Review of Microbiology, 61, 169–189.

    Article  CAS  PubMed  Google Scholar 

  • Dunlop, J. A. (2012). A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography. Biology Letters, 8, 457–460.

    Article  PubMed  Google Scholar 

  • Edwards, C. A., & Bohlen, P. J. (1996). Biology and ecology of earthworms (Vol. 3). London: Chapman & Hall, 433 pp.

    Google Scholar 

  • El-Borai, F. E., Duncan, L. W., & Preston, J. F. (2005). Bionomics of a phoretic association between Paenibacillus sp. and the entomopathogenic nematode Steinernema diaprepesi. Journal of Nematology, 37, 18–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eng, M. S., Preisser, E. L., & Strong, D. R. (2005). Phoresy of the entomopathogenic nematode Heterorhabditis marelatus by a non-host organism, the isopod Porcellio scaber. Journal of Invertebrate Pathology, 88, 173–176.

    Article  PubMed  Google Scholar 

  • Evtushenko, L. I., Dorofeeva, L. V., Dobrovolskaya, T. G., & Subbotin, S. (1994). Coryneform bacteria from plant galls induced by nematodes of the subfamily Anguininae. Russian Journal of Nematology, 2, 99–104.

    Google Scholar 

  • Evtushenko, L. I., Dorofeeva, L. V., Subbotin, S. A., Cole, J. R., & Tiedje, J. M. (2000). Leifsonia poae gen. nov., sp. nov., isolated from nematode galls on Poa annua, and reclassification of ‘Corynebacterium aquaticum’ Leifson 1962 as Leifsonia aquatica (ex Leifson 1962) gen. nov., nom. rev., comb. nov. and Clavibacter xyli Davis et al. 1984 with two subspecies as Leifsonia xyli (Davis et al. 1984) gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 50, 371–380.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, T., et al. (2014). Photorhabdus heterorhabditis sp. nov., a symbiont of the entomopathogenic nematode Heterorhabditis zealandica. International Journal of Systematic and Evolutionary Microbiology, 64, 1540–1545.

    Article  PubMed  Google Scholar 

  • ffrench-Constant, R. H., & Bowen, D. J. (2000). Novel insecticidal toxins from nematode-symbiotic bacteria. Cell and Molecular Life Sciences, 57, 828–833.

    Article  CAS  Google Scholar 

  • Frisli, T., Haverkamp, T. H., Jakobsen, K. S., Stenseth, N. C., & Rudi, K. (2013). Estimation of metagenome size and structure in an experimental soil microbiota from low coverage next-generation sequence data. Journal of Applied Microbiology, 114, 141–151.

    Article  CAS  PubMed  Google Scholar 

  • Gehrer, L., & Vorburger, C. (2012). Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biology Letters, 8, 613–615.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grewal, P. S., Ehlers, R. U., & Shapiro-Ilan, D. I. (2005). Nematodes as biological control agents. Wallingford: CABI Publishing.

    Book  Google Scholar 

  • Hendriksen, N. B. (1995). Effects of detritivore earthworms on dispersal and survival of the bacterium Aeromonas hydrophila. Acta Zoologica Fennica, 196, 115–119.

    Google Scholar 

  • Herbert, E. E., & Goodrich-Blair, H. (2007). Friend and foe: The two faces of Xenorhabdus nematophila. Nature Reviews Microbiology, 5, 634–646.

    Article  CAS  PubMed  Google Scholar 

  • Hinchliffe, S. J., Hares, M. C., Dowling, A. J., & ffrench-Constant, R. H. (2010). Insecticidal toxins from the Photorhabdus and Xenorhabdus bacteria. The Open Toxinology Journal, 3, 83–100.

    CAS  Google Scholar 

  • Horiuchi, J., Prithiviraj, B., Bais, H. P., Kimball, B. A., & Vivanco, J. M. (2005). Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. Planta, 222, 848–857.

    Article  CAS  PubMed  Google Scholar 

  • Horn, M. A., Schramm, A., & Drake, H. L. (2003). The earthworm gut: An ideal habitat for ingested N2O-producing microorganisms. Applied and Environmental Microbiology, 69, 1662–1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houck, M. A., & O’Connor, B. M. (1991). Ecological and evolutionary significance of phoresy in the Astigmata. Annual Review of Entomology, 36, 611–636.

    Article  Google Scholar 

  • Jaenike, J., Polak, M., Fiskin, A., Helou, M., & Minhas, M. (2007). Interspecific transmission of endosymbiotic Spiroplasma by mites. Biology Letters, 3, 23–25.

    Article  CAS  PubMed  Google Scholar 

  • Kanzaki, N., et al. (2012). Reverse taxonomy for elucidating diversity of insect-associated nematodes: A case study with termites. PLoS ONE, 7, e43865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya, H. K., & Gaugler, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology, 38, 181–206.

    Article  Google Scholar 

  • Kenney, S. J., Anderson, G. L., Williams, P. L., Millner, P. D., & Beuchat, L. R. (2004). Effectiveness of cleaners and sanitizers in killing Salmonella Newport in the gut of a free-living nematode, Caenorhabditis elegans. Journal of Food Protection, 67, 2151–2157.

    CAS  PubMed  Google Scholar 

  • Lacey, L. A., & Georgis, R. (2012). Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology, 44, 218–225.

    PubMed  PubMed Central  Google Scholar 

  • Lacharme-Lora, L., Perkins, S. E., Humphrey, T. J., Hudson, P. J., & Salisbury, V. (2009). Use of bioluminescent bacterial biosensors to investigate the role of free-living helminths as reservoirs and vectors of Salmonella. Environmental Microbiology Reports, 1, 198–207.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, E. E., & Clarke, D. J. (2012). Nematode parasites and entomopathogens. In F. E. Vega & H. K. Kaya (Eds.), Insect pathology (Vol. II, pp. 395–443). San Diego: Academic.

    Chapter  Google Scholar 

  • Lewis, E. E., Hazir, S., Hodson, A., & Gulcu, B. (2015). Trophic relationships of entomopathogenic nematodes in agricultural habitats. In R. Campos-Herrera (Ed.), Nematode pathogenesis of insects and other pests (pp. 139–163). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  • Lopez, L. C. S., Rodrigues, P. P., & Rios, R. I. (1999). Frogs and snakes as phoretic dispersal agents of bromeliad ostracods (Elpidium) and Annelids (Dero). Biotropica, 31, 705–708.

    Article  Google Scholar 

  • Lopez, L. C. S., Filizola, B., Deiss, I., & Rios, R. I. (2005). Phoretic behaviour of bromeliad annelids (Dero) and ostracods (Elpidium) using frogs and lizards as dispersal vectors. Hydrobiologia, 549, 15–22.

    Article  Google Scholar 

  • Macchioni, F. (2007). Importance of phoresy in the transmission of Acarina. Parassitologia, 49, 17–22.

    CAS  PubMed  Google Scholar 

  • Madsen, E. L., & Alexander, M. (1982). Transport of Rhizobium and Pseudomonas through soil. Soil Science Society of America Journal, 46, 557–560.

    Article  Google Scholar 

  • Malan, A., & Hatting, J. L. (2015). Entomopathogenic nematode exploitation: Case study in laboratoryand field applications from South Africa. In R. Campos-Herrera (Ed.), Nematode pathogenesis of insects and other pests (pp. 477–508). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  • Martens, E. C., Heungens, K., & Goodrich-Blair, H. (2003). Early colonization events in the mutualistic association between Steinernema carpocapsae nematodes and Xenorhabdus nematophila bacteria. Journal of Bacteriology, 185, 3147–3154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marti, O. G., & Timper, P. (1999). Phoretic relationship between a Bacillus sp. and the entomopathogenic nematode, Heterorhabditis sp. Journal of Nematology, 31, 553.

    Google Scholar 

  • Mauël, C., Young, M., Margot, P., & Karamata, D. (1989). The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Molecular & General Genetics, 215, 388–394.

    Article  Google Scholar 

  • Mercado, J. E., Hofstetter, R. W., Reboletti, D. M., & Negrón, J. F. (2014). Phoretic symbionts of the Mountain Pine Beetle (Dendroctonus ponderosae Hopkins). Forest Science, 60, 512–526.

    Google Scholar 

  • Mohandas, C., Sheeba, M., Firoza, A. J., & Rajamma, P. (2007). Bacteria associated with Rhabditis (Oscheius) spp. (Rhabditidae: Nematoda) for the biocontrol of insect pests. In Proceedings of national seminar on achievements and opportunities in post harvest management and value addition in root and tuber crops (NSRTC–2), Trivandrum, Kerala, India, pp. 195–198.

    Google Scholar 

  • Nykyri, J., et al. (2014). Evidence that nematodes may vector the soft rot-causing enterobacterial phytopathogens. Plant Pathology, 63, 747–757.

    Article  Google Scholar 

  • Ophel, K. M., Bird, A. F., & Kerr, A. (1993). Association of bacteriophage particles with toxin production by Clavibacter toxicus, the causal agent of annual ryegrass toxicity. Phytopathology, 83, 676–681.

    Article  CAS  Google Scholar 

  • Orozco, R. A., Hill, T., & Stock, S. P. (2013). Characterization and phylogenetic relationships of Photorhabdus luminescens subsp. sonorensis (c-Proteobacteria: Enterobacteriaceae), the bacterial symbiont of the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae). Current Microbiology, 66, 30–39.

    Article  CAS  PubMed  Google Scholar 

  • Perotti, M. A. (2009). Mégnin re-analysed: The case of the newborn baby girl, Paris, 1878. Experimental and Applied Acarology, 49, 37–44.

    Article  PubMed  Google Scholar 

  • Rae, R., et al. (2008). Isolation of naturally associated bacteria of necromenic Pristionchus nematodes and fitness consequences. Journal of Experimental Biology, 211, 1927–1936.

    Article  CAS  PubMed  Google Scholar 

  • Rae, R. G., Tourna, M., & Wilson, J. M. (2010). The slug parasitic nematode Phasmarhabditis hermaphrodita associates with complex and variable bacterial assemblages that do not affect its virulence. Journal of Invertebrate Pathology, 104, 222–226.

    Article  PubMed  Google Scholar 

  • Rajagopal, R., & Bhatnagar, R. K. (2002). Insecticidal toxic proteins produced by Photorhabdus luminescens akhurstii, a symbiont of Heterorhabditis indica. Journal of Nematology, 34, 23–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riley, I. T., & Ophel, K. M. (1992). Clavibacter toxicus sp. nov. the bacterium responsible for annual ryegrass toxicity in Australia. International Journal of Systematic Bacteriology, 42, 64–68.

    Article  Google Scholar 

  • Riley, I. T., & Reardon, T. B. (1995). Isolation and characterisation of Clavibacter tritici associated with Anguina tritici in Western Australia. Plant Pathology, 44, 805–810.

    Article  Google Scholar 

  • Riley, I. T., Schmitz, A., & de Silva, P. (2001). Anguina australis, a vector for Rathayibacter toxicus in Ehrharta longiflora. Australasian Plant Pathology, 30, 171–175.

    Article  Google Scholar 

  • Riley, I. T., Gregory, A. R., Allen, J. G., & Edgar, J. A. (2003). Poisoning of livestock in Oregon in the 1940s to 1960s attributed to corynetoxins produced by Rathayibacter in nematode galls in chewing fescue (Festuca nigrescens). Veterinary and Human Toxicology, 45, 160–162.

    PubMed  Google Scholar 

  • Sangeetha, B. G., et al. (2016). Molecular characterization and amplified ribosomal DNA restriction analysis of entomopathogenic bacteria associated with Rhabditis (Oscheius) spp. 3 Biotech, 6, 32.

    Article  PubMed Central  Google Scholar 

  • Sasaki, J., Chijimatsu, M., & Suzuki, K. I. (1998). Taxonomic significance of 2,4-diaminobutyric acid isomers in the cell wall peptidoglycan of actinomycetes and reclassification of Clavibacter toxicus as Rathayibacter toxicus comb. nov. International Journal of Systematic Bacteriology, 48, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, D. I., Tylka, G. L., Berry, E. C., & Lewis, L. C. (1995). Effects of earthworms on the dispersal of Steinernema spp. Journal of Nematology, 27, 21–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro-Ilan, D. I., & Brown, I. (2013). Earthworms as phoretic hosts for Steinernema carpocapsae and Beauveria bassiana: Implications for enhanced biological control. Biological Control, 66, 41–48.

    Article  Google Scholar 

  • Sicard, M., et al. (2004). Stages of infection during the tripartite interaction between Xenorhabdus nematophila, its nematode vector, and insect hosts. Applied and Environmental Microbiology, 70, 6473–6480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens, P. M., Davoren, C. W., Ryder, M. H., & Doube, B. M. (1994). Influence of the earthworm Aporrectodea trapezoides (Lumbricidae) on the colonization of alfalfa (Medicago sativa L.) roots by Rhizobium meliloti L5-30R and the survival of R. meliloti L5-30R in soil. Biology and Fertility of Soils, 18, 63–70.

    Article  Google Scholar 

  • Stock, S. P. (2015). Diversity, biology and evolutionary relationships. In R. Campos-Herrera (Ed.), Nematode pathogenesis of insects and other pests (pp. 3–27). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  • Sudhaus, W. (2008). Evolution of insect parasitism in rhabditid and diplogastrid nematodes. In S. E. Makarov & R. N. Dimitrijević (Eds.), Advances in arachnology and developmental biology (pp. 143–161). Vienna: SASA, Belgrade & UNESCO MAB Serbia.

    Google Scholar 

  • Sudhaus, W., & Kühne, R. (1990). Nematodes associated with Psychodidae: Description of Rhabditis berolina sp. n. and redescription of R. dubia Bovien, 1937 (Nematoda: Rhabditidae), with biological and ecological notes, and a phylogenetic discussion. Nematologica, 35, 305–320.

    Article  Google Scholar 

  • Tailliez, P., Pagès, S., Ginibre, N., & Boemare, N. (2006). New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. International Journal of Systematic and Evolutionary Microbiology, 56, 2805–2818.

    Article  CAS  PubMed  Google Scholar 

  • Tailliez, P., et al. (2010). Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. International Journal of Systematic and Evolutionary Microbiology, 60, 1921–1937.

    Article  PubMed  Google Scholar 

  • Tambong, J. T. (2013). Phylogeny of bacteria isolated from Rhabditis sp. (Nematoda) and identification of novel entomopathogenic Serratia marcescens strains. Current Microbiology, 66, 138–144.

    Article  CAS  PubMed  Google Scholar 

  • Tan, L., & Grewal, P. S. (2001). Pathogenicity of Moraxella osloensis, a bacterium associated with the nematode Phasmarhabditis hermaphrodita, to the slug Deroceras reticulatum. Applied and Environmental Microbiology, 67, 5010–5016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, L., & Grewal, P. S. (2003). Characterization of the first molluscicidal lipopolysaccharide from Moraxella osloensis. Applied and Environmenatal Microbiology, 69, 3646–3649.

    Article  CAS  Google Scholar 

  • Thorpe, I. S., Killham, K., Prosser, J. I., & Glover, L. A. (1996). The role of the earthworm Lumbricus terrestris in the transport of bacterial inocula through soil. Biology and Fertility of Soils, 23, 132–139.

    Article  Google Scholar 

  • Troemel, E. R., Kimmel, B. E., & Bargmann, C. I. (1997). Reprogramming chemotaxis responses: Sensory neurons define olfactory preferences in C. elegans. Cell, 91, 161–169.

    Article  CAS  PubMed  Google Scholar 

  • Van den Velde, S., et al. (2006). Species identification of corynebacteria by cellular fatty acid analysis. Diagnostic Microbiology and Infectious Disease, 54, 99–104.

    Article  PubMed  CAS  Google Scholar 

  • Vandel, A. (1965). Biospeleology: The biology of cavernicolous animals. London: Pergamon Press, 524 pp.

    Google Scholar 

  • Vidaver, A. K. (1981). The plant pathogenic Corynebacteria. Annual Reviews of Microbiology, 36, 491–517.

    Google Scholar 

  • Wilkinson, P. (2009). Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genomics, 10, 302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson, M. J., Glen, D. M., & George, S. K. (1993). The rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological-control agent for slugs. Biocontrol Science and Technology, 3, 503–511.

    Article  Google Scholar 

  • Zgurskaya, H. I., Evtushenko, L. I., Akimov, V. N., & Kalakoutskii, L. V. (1993). Rathayibacter gen, nov., including the species Rathayibacter rathayi comb. nov., Rathayibacter tritici comb. nov., Rathayibacter iranicus comb. nov., and six strains from annual grasses. International Journal of Systematic Bacteriology, 43, 143–149.

    Article  Google Scholar 

  • Zhang, C. X., et al. (2009). Serratia nematodiphila sp. nov., associated symbiotically with the entomopathogenic nematode Heterorhabditidoides chongmingensis (Rhabditida: Rhabditidae). International Journal of Systematic and Evolutionary Microbiology, 59, 1603–1608.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ciancio, A. (2016). Travelling Bacteria: Phoresy. In: Invertebrate Bacteriology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0884-3_6

Download citation

Publish with us

Policies and ethics