Skip to main content

Nanoplasmonic and Microfluidic Devices for Biological Sensing

  • Conference paper
  • First Online:
Nano-Optics: Principles Enabling Basic Research and Applications

Abstract

In this chapter we report about recent advances on the development and application of 2D and 3D plasmonic nanostructures used for sensing of biological samples by Raman spectroscopy at unprecedented resolution of analysis. Besides, we explain how the integration of these nanodevices in a microfluidic apparatus can simplify the analysis of biological samples. In the first part we introduce and motivate the convenience of using nanoplasmonic enhancers and Raman spectroscopy for biological sensing, describing the phenomena and the current approaches to fabricate nanoplasmonic structures. In the second part, we explain how specific multi-element devices produce the optimal enhancement of the Raman scattering. We report cases where biological sensing of DNA was performed at few molecules level with nanometer spatial resolutions. Finally, we show an example of microfluidic device integrating plasmonic nanodevices to sort and drive biological samples, like living cells, towards the optical probe in order to obtain optimal conditions of analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maier, S. A. (2007). Plasmonics: Fundamentals and applications. New York: Springer. ISBN 0-387-33150-6.

    Google Scholar 

  2. Giugni, A., Torre, B., Allione, M., Gentile, F., Candeloro, P., Coluccio, M. L., Perozziello, G., Limongi, T., Marini, M., Raimondo, R., Tirinato, L., Francardi, M., Das, G., Proietti Zaccaria, R., Falqui, A., & Di Fabrizio, E. (2015). Novel plasmonic probes and smart superhydrophobic devices, New tools for forthcoming spectroscopies at the nanoscale. NATO Science for Peace and Security Series B: Physics and Biophysics, 68, 209–235.

    Google Scholar 

  3. De Angelis, F., Gentile, F., Mecarini, F., Das, G., Moretti, M., Candeloro, P., et al. (2011). Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat Photonics, 5, 682–7.

    Article  ADS  Google Scholar 

  4. Le Ru, E. C., Etchegoin, P. G., Grand, J., Felidj, N., Aubardì, J., & Lévi, G. (2008). Surface enhanced Raman spectroscopy on nanolithography-prepared substrates. Current Applied Physics, 8, 467–70.

    Article  ADS  Google Scholar 

  5. Qiu, T., & Chu, P. K. (2008). Self-selective electroless plating: An approach for fabrication of functional 1D nanomaterials. Materials Science and Engineering, 61, 59–77.

    Article  Google Scholar 

  6. De Angelis, F., Das, G., Candeloro, P., Patrini, M., Galli, M., Bek, A., et al. (2010). Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polariton. Nature Nanotechnology, 5, 67–72.

    Article  ADS  Google Scholar 

  7. Das, G., Mecarini, F., Gentile, F., De Angelis, F., Kumar, M. H. G., Candeloro, P., et al. (2009). Nano-patterned SERS substrate: Application for protein analysis vs. temperature. Biosensors and Bioelectronics, 24, 1693–9.

    Article  Google Scholar 

  8. Michaels, A. M., Jiang, J., & Brus, L. (2000). Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. The Journal of Physical Chemistry B, 104, 11965.

    Article  Google Scholar 

  9. Li, K., Stockman, M. I., & Bergman, D. J. (2003). Self-similar chain of metal nanospheres as an efficient nanolens. Physical Review Letters, 91, 227402.

    Article  ADS  Google Scholar 

  10. Dai, J., Čajko, F., Tsukerman, I., & Stockman, M. (2008). Electrodynamic effects in plasmonic nanolenses. Physical Review Letters, 77, 115419.

    Google Scholar 

  11. Schofield, S. R., Studer, P., Hirjibehedin, C. F., Curson, N. J., Aeppli, G., & Bowler, D. R. (2013). Quantum engineering at the silicon surface using dangling bonds. Nature Communications, 4, 1–7.

    Article  Google Scholar 

  12. Coluccio, M. L., Gentile, F., Francardi, M., Perozziello, G., Malara, N., Candeloro, P., Di Fabrizio, E., et al. (2014). Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications. Sensors, 14, 6056–6083.

    Article  Google Scholar 

  13. Coluccio, M. L., Gentile, F., Das, G., Perozziello, G., Malara, N., Alrasheed, S., Candeloro, P., & Di Fabrizio, E. (2015). From nucleotides to DNA analysis by a SERS substrate of a self similar chain of silver nanospheres. Journal of Optics, 17, 114021.

    Article  ADS  Google Scholar 

  14. Chirumamilla, M., Toma, A., Gopalakrishnan, A., Das, G., Zaccaria, R. P., Krahne, R., Rondanina, E., Leoncini, M., Liberale, C., De Angelis, F., & Di Fabrizioe, E. (2014). 3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced Raman scattering. Advanced Materials, 26, 2353–2358.

    Article  Google Scholar 

  15. De Angelis, F., Proietti, R. Z., Francardi, M., Liberale, C., & Di Fabrizio, E. (2011). Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers. Optics Express, 19, 22268–79.

    Article  ADS  Google Scholar 

  16. Proietti, R. Z., Alabastri, A., De Angelis, F., Das, G., Liberale, C., & Toma, A. (2012). Fully analytical description of adiabatic compression in dissipative polaritonic structures. Physical Review B, 86, 035410.

    Article  ADS  Google Scholar 

  17. Proietti, R. Z., De Angelis, F., Toma, A., Razzari, L., Alabastri, A., & Das, G. (2012). Surface plasmon polariton compression through radially and linearly polarized source. Optics Letters, 37, 545–7.

    Article  ADS  Google Scholar 

  18. Coluccio, M. L., Francardi, M., Gentile, F., Candeloro, P., Ferrara, L., Perozziello, G., & Di Fabrizio, E. (2016). Plasmonic 3D-structures based on silver decorated nanotips for biological sensing. Optics and Lasers in Engineering, 76(9), 45–51.

    Article  ADS  Google Scholar 

  19. Coluccio, M. L., Gentile, F., Das, G., Nicastri, A., Perri, A. M., Candeloro, P., Perozziello, G., Proietti, R., Totero-Gongora, J. S., Alrasheed, S., Fratalocchi, A., Limongi, T., Cuda, G., & Di Fabrizio, E. (2015). Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain. Science Advances, 1(8), e1500487.

    Article  ADS  Google Scholar 

  20. Kiyotsugu, Y., & Yoshio, M. (2004). Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Science, 95, 866–871.

    Article  Google Scholar 

  21. Scully, R., Ganesan, S., Vlasakova, K., Chen, J., Socolovsky, M., & Livingston, D. M. (1999). Genetic analysis of BRCA1 function in a defined tumor cell line. Molecular Cell, 4, 1093–1099.

    Article  Google Scholar 

  22. Prado, E., Colin, A., Servant, L., Lecomte, S., & Phys, J. (2014). SERS spectra of oligonucleotides as fingerprints to detect label-free RNA in microfluidic devices. Journal Physical Chemistry C, 118, 13965–71.

    Article  Google Scholar 

  23. Wu, Y. C., Lo, W. Y., Chiu, C. R., & Yang, T. S. (2006). Surface enhanced Raman spectra of oligonucleotides induced by spermine. Journal of Raman Spectroscopy, 3, 799–807.

    Article  ADS  Google Scholar 

  24. Perozziello, G., Møllenbach, J., Laursen, S., di Fabrizio, E., Gernaey, K., & Krühne, U. (2012). Lab on a chip automates in vitro cell culturing. Microelectronic Engineering, 98, 655–658.

    Article  Google Scholar 

  25. Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368–373.

    Article  ADS  Google Scholar 

  26. Simone, G., Perozziello, G., & Nanosci, J. (2011). UV/Vis visible optical waveguides fabricated using organic-inorganic nanocomposite layers. Nanotechnology, 11(3), 2057–2063.

    Google Scholar 

  27. Yu, A., Savas, T., Cabrini, S., Difabrizio, E., Smith, H. I., Stellacci, F., & Am, J. (2005). High resolution printing of DNA feature on poly (methyl methacrylate) substrates using supramolecular nano-stamping. Chemical Society, 127(48), 16774–16775.

    Article  Google Scholar 

  28. Zhang, Y., Park, S., Yang, S., & Wang, T. H. (2010). An all-in-one microfluidic device for parallel DNA extraction and gene analysis. Biomedical Microdevices, 12(6), 1043–1049.

    Article  Google Scholar 

  29. Keramas, G., Perozziello, G., Geschke, O., & Christensen, C. B. V. (2004). Development of a multiplex microarray microsystem. Lab on a Chip, 4(2), 152–158.

    Article  Google Scholar 

  30. Liu, K., & Fan, Z. H. (1011). Thermoplastic microfluidic devices and their applications in protein and DNA analysis. Analyst (London), 136(7), 1288–1297.

    Article  Google Scholar 

  31. Wu, J., Wu, X. Z., Huang, T., & Pawliszyn, J. (2004). Analysis of proteins by CE, CIEF, and microfluidic devices with whole-column-imaging detection. In M. A. Strege, & A. L. Lagu (Eds.), Methods in molecular biology, vol. 276: capillary electrophoresis of proteins and peptides (pp. 229–252). Totowa: Humana Press.

    Google Scholar 

  32. Perozziello, G., Candeloro, P., Gentile, F., Coluccio, M. L., Tallerico, M., De Grazia, A., Nicastri, A., Perri, A. M., Parrotta, E., Pardeo, F., Catalano, R., Cuda, G., & Di Fabrizio, E. (2015). A microfluidic dialysis device for complex biological mixture SERS analysis. Microelectronic Engineering, 144, 37–41.

    Article  Google Scholar 

  33. Tekin, H. C., Scherz, C., & Gijs, M. A. M. (2011). Microfluidic device for analysis of protein biomarkers using magnetic bead surface coverage detection. In Proceedings of the 15th international conference on miniaturized systems for chemistry and life sciences (MicroTAS, 2011).

    Google Scholar 

  34. Perozziello, G., Candeloro, P., Gentile, F., Nicastri, A., Perri, A., Coluccio, M. L., Adamo, A., Pardeo, F., Catalano, R., Parrotta, E., Espinosa, H. D., Cuda, G., & Di Fabrizio, E. (2014). Microfluidics & nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers. RSC Advances, 4(98), 55590–55598.

    Article  Google Scholar 

  35. Perozziello, G., La Rocca, R., Cojoc, G., Liberale, C., Malara, N., Simone, G., Candeloro, P., Anichini, A., Tirinato, L., Gentile, F., Coluccio, M. L., Carbone, E., & Di Fabrizio, E. (2012). Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition, Small. Small, 8(18), 2886–2894.

    Article  Google Scholar 

  36. Simone, G., & Perozziello, G. (2010). Ca2+ mediates the adhesion of breast cancer cells in self-assembled multifunctional microfluidic chip prepared with carbohydrate beads. Micro and Nanosystems, 2(4), 261–268.

    Article  Google Scholar 

  37. Simone, G., Perozziello, G., Battista, E., De Angelis, F., Candeloro, P., Gentile, F., Malara, N., Manz, A., Carbone, E., Netti, P., & Di Fabrizio, E. (2012). Cell rolling and adhesion on surfaces in shear flow. A model for an antibody-based microfluidic screening system. Microelectronic Engineering, 98, 668–671.

    Article  Google Scholar 

  38. Perozziello, G., Simone, G., Malara, N., La Rocca, R., Tallerico, R., Catalano, R., Pardeo, F., Candeloro, P., Cuda, G., Carbone, E., & Di Fabrizio, E. (2013). Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations. Electrophoresis, 34(13), 1845–1851.

    Article  Google Scholar 

  39. Perozziello, G., Catalano, R., Francardi, M., Rondanina, E., Pardeo, F., De Angelis, F., Malara, N., Candeloro, P., Morrone, G., & Di Fabrizio, E. (2013). A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells. Microelectronic Engineering, 111, 314–319.

    Article  Google Scholar 

  40. Kwan, J. M., Guo, Q., Kyluik-Price, D. L., Ma, H., & Scott, M. D. (2013). Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells. American Journal of Hematology, 88(8), 682–689.

    Article  Google Scholar 

  41. Faustino, V., Pinho, D., Yaginuma, T., Calhelha, R. C., Ferreira, I. C., & Lima, R. (2014). Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells. BioChip Journal, 8(1), 42–47.

    Article  Google Scholar 

  42. Notingher, I., Verrier, S., Romanska, H., Bishop, A. E., Polak, J. M., & Hench, L. L. (2002). In situ characterisation of living cells by Raman spectroscopy. Spectroscopy, 16, 43–51.

    Article  Google Scholar 

  43. Verrier, S., Notingher, I., Polak, J. M., & Hench, L. L. (2004). In situ monitoring of cell death using Raman microspectroscopy. Biopolymers, 74, 157–162.

    Article  Google Scholar 

  44. Uzunbajakava, N., Lenferink, A., Kraan, Y., Volokhina, E., Vrensen, G., Greve, J., & Otto, C. (2003). Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. Biophysical Journal, 84, 3968–3981.

    Article  ADS  Google Scholar 

  45. Short, K. W., Carpenter, S., Freyer, J. P., & Mourant, J. R. (2005). Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures. Biophysical Journal, 88, 4274–4288.

    Article  ADS  Google Scholar 

  46. Notingher, I., Jell, G., Lohbauer, U., Salih, V., & Hench, L. L. (2004). In situ non-invasive spectral discrimination between bone cell phenotypes used in tissue engineering. Journal of Cellular Biochemistry, 92, 1180–1192.

    Article  Google Scholar 

  47. Cheng, I. F., Chang, H.-C., Hou, D., & Chang, H.-C. (2007). An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics, 1, 21503.

    Article  Google Scholar 

  48. Huh, Y. S., Chung, A. J., & Erickson, D. (2009). Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis. Microfluidics and Nanofluidics, 6, 285–297.

    Article  Google Scholar 

  49. Ramser, K., Enger, J., Goksoer, M., Hanstorp, D., Logg, K., & Kaell, M. (2005). A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells. Lab on a Chip, 5, 431–436.

    Article  Google Scholar 

  50. Perozziello, G., Candeloro, P., De Grazia, A., Esposito, F., Allione, M., Coluccio, M. L., Tallerico, R., Valpapuram, I., Tirinato, L., Das, G., Giugni, A., Torre, B., Veltri, P., Kruhne, U., Della Valle, G., & Di Fabrizio, E. (2016). Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers. Optics Express, 24(2), A180–A190.

    Article  ADS  Google Scholar 

  51. Wood, B. R., Caspers, P., Puppels, G. J., Pandiancherri, S., & McNaughton, D. (2007). Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation. Analytical and Bioanalytical Chemistry, 387(5), 1691–1703.

    Article  Google Scholar 

  52. Bankapur, A., Zachariah, E., Chidangil, S., Valiathan, M., & Mathur, D. (2010). Raman tweezers spectroscopy of live, single red and white blood cells. PLoS One, 5(4), e10427.

    Article  ADS  Google Scholar 

  53. Tallerico, R., Todaro, M., Di Franco, S., Maccalli, C., Garofalo, C., Sottile, R., Palmieri, C., Tirinato, L., Pangigadde, P. N., La Rocca, R., Mandelboim, O., Stassi, G., Di Fabrizio, E., Parmiani, G., Moretta, A., Dieli, F., Kärre, K., & Carbone, E. (2013). Human NK cells selective targeting of colon cancer-initiating cells: A role for natural cytotoxicity receptors and MHC class I molecules. The Journal of Immunology, 190(5), 2381–2390.

    Article  Google Scholar 

  54. Ong, Y. H., Lim, M., & Liu, Q. (2012). Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells. Optics Express, 20(20), 22158–22171.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge all contributors that contributed in this work from other institution, in particular the researchers from the previous Nanostructure Division at IIT (Italian Institute of Technology) in Genoa.

We thank for the financial support the King Abdullah University of Science and Technology start-up fund and the Italian Minister of Health (projects nos. GR-2010-2320665 and GR-2010-2311677)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzo Di Fabrizio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Perozziello, G. et al. (2017). Nanoplasmonic and Microfluidic Devices for Biological Sensing. In: Di Bartolo, B., Collins, J., Silvestri, L. (eds) Nano-Optics: Principles Enabling Basic Research and Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0850-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-0850-8_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-0848-5

  • Online ISBN: 978-94-024-0850-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics