Skip to main content

Cytoarchitectural Modules: Functional Specialisation and Disruption in Neuropsychiatric Disorders

  • Chapter
Recent Advances on the Modular Organization of the Cortex
  • 1017 Accesses

Abstract

Central to the concept of a modular brain is the notion that ‘units’ of function can be identified. Although structural units corresponding to these functions are not a necessary consequence of the model, the presence of modular structures suggests a neural basis. Three levels of structural modular organisation–cortical region, macrocolumn, minicolumn–are considered here, with a focus on the smallest units, the minicolumns, which provide an index of the specialisation and functional integrity of the larger modules. The issue of processing specialisation is discussed with regard to functions that may themselves be considered to be modular: face processing and language. The issue of functional integrity is approached through the association between pathology, minicolumn disruption and functional abnormality in Alzheimer’s disease and schizophrenia. In such disorders there is evidence of pervasive functional disruption across multiple domains which suggests commonalties across modules. In dementia and old age a process of ‘dedifferentiation’ has been observed whereby functions become simplified and less distinct. This appears to be the opposite of ‘emergent modularisation’ that is observed during development. In this context, the degree of modularity of the brain may be considered to change over time, initially increasing and then decreasing across the lifespan. The widespread structural motif of the (mini)column is a simple modular component, common to most brain regions but varying in relation to regional processing biases. Systematic regional variations may develop to support emergent modular function and acquisition of expertise, or may be eroded, reflecting vulnerability to disease and loss of specialisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arendt T (2003) Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: the Dr. Jekyll and Mr. Hyde concept of Alzheimer’s disease or the yin and yang of neuroplasticity. Prog Neurobiol 71:83–248

    Article  PubMed  Google Scholar 

  • Arendt T (2004) Neurodegeneration and plasticity. Int J Dev Neurosci 22:507–514

    Article  CAS  PubMed  Google Scholar 

  • Arendt T, Bruckner MK, Gertz HJ, Marcova L (1998) Cortical distribution of neurofibrillary tangles in Alzheimer’s disease matches the pattern of neurons that retain their capacity of plastic remodelling in the adult brain. Neuroscience 83:991–1002

    Article  CAS  PubMed  Google Scholar 

  • Armstrong RA (1995) Is the clustering of beta-amyloid (A beta) deposits in the frontal cortex of Alzheimer patients determined by blood vessels? Neurosci Lett 195:121–124

    Article  CAS  PubMed  Google Scholar 

  • Armstrong RA, Cairns NJ, Lantos PL (1997) Dementia with Lewy bodies: clustering of Lewy bodies in human patients. Neurosci Lett 224:41–44

    Article  CAS  PubMed  Google Scholar 

  • Armstrong RA, Cairns NJ, Lantos PL (1998) Clustering of pick bodies in patients with Pick’s disease. Neurosci Lett 242:81–84

    Article  CAS  PubMed  Google Scholar 

  • Barta PE, Pearlson GD, Brill LB 2nd, Royall R, McGilchrist IK, Pulver AE et al (1997) Planum temporale asymmetry reversal in schizophrenia: replication and relationship to gray matter abnormalities. Am J Psychiatry 154:661–667

    Article  CAS  PubMed  Google Scholar 

  • Beasley CL, Chana G, Honavar M, Landau S, Everall IP, Cotter D (2005) Evidence for altered neuronal organisation within the planum temporale in major psychiatric disorders. Schizophr Res 73:69–78

    Article  PubMed  Google Scholar 

  • Broadbelt K, Byne W, Jones LB (2002) Evidence for a decrease in basilar dendrites of pyramidal cells in schizophrenic medial prefrontal cortex. Schizophr Res 58(1):75–81

    Article  PubMed  Google Scholar 

  • Buldyrev SV, Cruz L, Gomez-Isla T, Gomez-Tortosa E, Havlin S, Le R, Stanley HE, Urbanc B, Hyman BT (2000) Description of microcolumnar ensembles in association cortex and their disruption in Alzheimer and Lewy body dementias. Proc Natl Acad Sci U S A 97:5039–5043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buxhoeveden DP, Switala AE, Litaker M, Roy E, Casanova MF (2001) Lateralization of minicolumns in human planum temporale is absent in nonhuman primate cortex. Brain Behav Evol 57:349–358

    Article  CAS  PubMed  Google Scholar 

  • Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17(1):85–100

    Article  PubMed  Google Scholar 

  • Carey S (1978) The child as a word learner. In: Halle M, Bresnan J, Miller G (eds) Linguistic theory and psychological reality. MIT Press, Cambridge, MA

    Google Scholar 

  • Casanova MF (2003) Modular concepts of brain organization and the neuropathology of psychiatric conditions. Psychiatry Res 118:101–102

    Article  PubMed  Google Scholar 

  • Chance SA (2006) Subtle changes in the ageing human brain. Nutr Health 18:217–224

    Article  CAS  PubMed  Google Scholar 

  • Chance SA, Crow TJ (2007) Distinctively human: cerebral lateralisation and language in Homo sapiens. J Anthropol Sci 85:83–100

    Google Scholar 

  • Chance SA, Walker M, Crow TJ (2005) Reduced density of calbindin immunoreactive interneurons in the planum temporale in schizophrenia. Brain Res 1046:32–37

    Article  CAS  PubMed  Google Scholar 

  • Chance SA, Casanova MF, Switala AE, Crow TJ (2006a) Minicolumnar structure in Heschl’s gyrus and planum temporale: asymmetries in relation to sex and callosal fiber number. Neuroscience 143(4):1041–1050

    Article  CAS  PubMed  Google Scholar 

  • Chance SA, Casanova MF, Switala AE, Crow TJ, Esiri MM (2006b) Minicolumn thinning in temporal lobe association cortex but not primary auditory cortex in normal human ageing. Acta Neuropathol 111:459–464

    Article  PubMed  Google Scholar 

  • Chance SA, Casanova MF, Switala A, Crow TJ (2008) Auditory cortex asymmetry, altered minicolumn spacing and absence of ageing effects in schizophrenia. Brain 131(12):3178–3192

    Article  PubMed Central  PubMed  Google Scholar 

  • Chance SA, Clover L, Cousijn H, Currah L, Pettingill R, Esiri MM (2011) Micro-anatomical correlates of cognitive ability and decline: normal ageing, MCI and Alzheimers disease. Cereb Cortex 21(8):1870–1878

    Article  PubMed  Google Scholar 

  • Chance SA, Sawyer EK, Clover LM, Wicinski B, Hof PR, Crow TJ (2013) Hemispheric asymmetry in the fusiform gyrus distinguishes Homo sapiens from chimpanzees. Brain Struct Funct 218:1391–1405

    Article  PubMed  Google Scholar 

  • Colombo JA, Quinn B, Puissant V (2002) Disruption of astroglial interlaminar processes in Alzheimer’s disease. Brain Res Bull 58:235–242

    Article  CAS  PubMed  Google Scholar 

  • Cowell PE, Allen LS, Zalatimo NS, Denenberg VH (1992) A developmental study of sex and age interactions in the human corpus callosum. Brain Res Dev Brain Res 66:187–192

    Article  CAS  PubMed  Google Scholar 

  • Crow TJ, Paez P, Chance SA (2007) Callosal misconnectivity and the sex difference in psychosis. Int Rev Psychiatry 19(4):449–457

    Article  CAS  PubMed  Google Scholar 

  • Cruz L, Roe DL, Urbanc B, Cabral H, Stanley HE, Rosene DL (2004) Age-related reduction in microcolumnar structure in area 46 of the rhesus monkey correlates with behavioral decline. Proc Natl Acad Sci U S A 101:15846–15851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz L, Roe DL, Urbanc B, Inglis A, Stanley HE, Rosene DL (2009) Age-related reduction in microcolumnar structure correlates with cognitive decline in ventral but not dorsal area 46 of the rhesus monkey. Neuroscience 158(4):1509–1520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di Rosa E, Crow TJ, Walker MA, Black G, Chance SA (2009) Reduced neuron density, enlarged minicolumn spacing and altered ageing effects in fusiform cortex in schizophrenia. Psychiatry Res 166:102–115

    Article  PubMed  Google Scholar 

  • Diwadkar VA, DeBellis MD, Sweeney JA, Pettegrew JW, Keshavan MS (2004) Abnormalities in MRI-measured signal intensity in the corpus callosum in schizophrenia. Schizophr Res 67:277–282

    Article  PubMed  Google Scholar 

  • Elston GN, Tweedale R, Rosa MG (1999) Cellular heterogeneity in cerebral cortex: a study of the morphology of pyramidal neurones in visual areas of the marmoset monkey. J Comp Neurol 415(1):33–51

    Article  CAS  PubMed  Google Scholar 

  • Esiri MM, Chance SA (2012) Cognitive reserve, cortical plasticity and resistance to Alzheimer’s disease. Alzheimers Res Ther 4(2):7. doi:10.1186/alzrt105

    Article  PubMed Central  PubMed  Google Scholar 

  • Fenstemaker SB, Kiorpes L, Movshon JA (2001) Effects of experimental strabismus on the architecture of macaque monkey striate cortex. J Comp Neurol 438:300–317

    Article  CAS  PubMed  Google Scholar 

  • Friederici AD, Pfeifer E, Hahne A (1993) Event-related brain potentials during natural speech processing: effects of semantic, morphological and syntactic violations. Brain Res Cogn Brain Res 1:183–192

    Article  CAS  PubMed  Google Scholar 

  • Galuske RA, Schlote W, Bratzke H, Singer W (2000) Interhemispheric asymmetries of the modular structure in human temporal cortex. Science 289:1946–1949

    Article  CAS  PubMed  Google Scholar 

  • Gardenfors P (2000) Conceptual spaces: the geometry of thought. MIT Press, Cambridge, MA

    Google Scholar 

  • Geschwind N, Levitsky W (1968) Human brain: left-right asymmetries in temporal speech region. Science 161:186–187

    Article  CAS  PubMed  Google Scholar 

  • Geula C (1998) Abnormalities of neural circuitry in Alzheimer’s disease: hippocampus and cortical cholinergic innervation. Neurology 51:S18–S29; discussion S65–67

    Article  CAS  PubMed  Google Scholar 

  • Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706

    Article  CAS  PubMed  Google Scholar 

  • Goh JOS (2011) Functional dedifferentiation and altered connectivity in older adults: neural accounts of cognitive aging. Aging Dis 2(1):30–48

    PubMed Central  PubMed  Google Scholar 

  • Goldstone RL, Barsalou LW (1998) Reuniting perception and conception. Cognition 65:231–262

    Article  CAS  PubMed  Google Scholar 

  • Greene JR, Radenahmad N, Wilcock GK, Neal JW, Pearson RC (2001) Accumulation of calbindin in cortical pyramidal cells with ageing; a putative protective mechanism which fails in Alzheimer’s disease. Neuropathol Appl Neurobiol 27:339–342

    Article  CAS  PubMed  Google Scholar 

  • Guillery RW (2005) Is postnatal neocortical maturation hierarchical? Trends Neurosci 28:512–517

    Article  CAS  PubMed  Google Scholar 

  • Hayes TL, Lewis DA (1993) Hemispheric differences in layer III pyramidal neurons of the anterior language area. Arch Neurol 50:501–505

    Article  CAS  PubMed  Google Scholar 

  • Hensch TK, Stryker MP (2004) Columnar architecture sculpted by GABA circuits in developing cat visual cortex. Science 303:1678–1681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hiorns RW, Neal JW, Pearson RC, Powell TP (1991) Clustering of ipsilateral cortico-cortical projection neurons to area 7 in the rhesus monkey. Proc Biol Sci 246:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hof PR, Morrison JH (2004) The aging brain: morphomolecular senescence of cortical circuits. Trends Neurosci 27:607–613

    Article  CAS  PubMed  Google Scholar 

  • Hof PR, Cox K, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: I. Superior frontal and inferior temporal cortex. J Comp Neurol 301:44–54

    Article  CAS  PubMed  Google Scholar 

  • Honea R, Crow TJ, Passingham D, Mackay CE (2005) Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 162(12):2233–2245

    Article  PubMed  Google Scholar 

  • Hutsler JJ (2003) The specialized structure of human language cortex: pyramidal cell size asymmetries within auditory and language-associated regions of the temporal lobes. Brain Lang 86(2):226–242

    Article  PubMed  Google Scholar 

  • Iritani S, Niizato K, Emson PC (2001) Relationship of calbindin D28K-immunoreactive cells and neuropathological changes in the hippocampal formation of Alzheimer’s disease. Neuropathology 21:162–167

    Article  CAS  PubMed  Google Scholar 

  • Jamison HL, Watkins KE, Bishop DV, Matthews PM (2006) Hemispheric specialization for processing auditory nonspeech stimuli. Cereb Cortex 16:1266–1275

    Article  PubMed  Google Scholar 

  • Johnston PJ, Stojanov W, Devir H, Schall U (2005) Functional MRI of facial emotion recognition deficits in schizophrenia and their electrophysiological correlates. Eur J Neurosci 22(5):1221–1232

    Article  PubMed  Google Scholar 

  • Jones LB, Johnson N, Byne W (2002) Alterations in MAP2 immunocytochemistry in areas 9 and 32 of schizophrenic prefrontal cortex. Psychiatry Res 114(3):137–148

    Article  CAS  PubMed  Google Scholar 

  • Jung-Beeman M (2005) Bilateral brain processes for comprehending natural language. Trends Cogn Sci 9:512–518

    Article  PubMed  Google Scholar 

  • Karmiloff-Smith A (2009) Nativism versus neuroconstructivism: rethinking the study of developmental disorders. Dev Psychol 45(1):56–63

    Article  PubMed  Google Scholar 

  • Kosik KS, Rogers J, Kowall NW (1987) Senile plaques are located between apical dendritic clusters. J Neuropathol Exp Neurol 46:1–11

    Article  CAS  PubMed  Google Scholar 

  • Kretschmann HJ, Schleicher A, Wingert F, Zilles K, Loblich HJ (1979) Human brain growth in the 19th and 20th century. J Neurol Sci 40:169–188

    Article  CAS  PubMed  Google Scholar 

  • Law AJ, Harrison PJ (2003) The distribution and morphology of prefrontal cortex pyramidal neurons identified using anti-neurofilament antibodies SMI32, N200 and FNP7. Normative data and a comparison in subjects with schizophrenia, bipolar disorder or major depression. J Psychiatr Res 37(6):487–499

    Article  PubMed  Google Scholar 

  • Lindenberger U, Baltes PB (1994) Sensory functioning and intelligence in old age: a strong connection. Psychol Aging 9:339–355

    Article  CAS  PubMed  Google Scholar 

  • McDonald B, Highley JR, Walker MA, Herron BM, Cooper SJ, Esiri MM, Crow TJ (2000) Anomalous asymmetry of fusiform and parahippocampal gyrus gray matter in schizophrenia: a post-mortem study. Am J Psychiatr 157(1):40–47

    Article  CAS  PubMed  Google Scholar 

  • Meng M, Cherian T, Singal G, Sinha P (2012) Lateralization of face processing in the human brain. Proc R Soc B. doi:10.1098/rspb.2011.1784

    PubMed Central  PubMed  Google Scholar 

  • Moore JK, Guan YL (2001) Cytoarchitectural and axonal maturation in human auditory cortex. J Assoc Res Otolaryngol 2:297–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morrison JH, Lewis DA, Campbell MJ, Huntley GW, Benson DL, Bouras C (1987) A monoclonal antibody to non-phosphorylated neurofilament protein marks the vulnerable cortical neurons in Alzheimer’s disease. Brain Res 416:331–336

    Article  CAS  PubMed  Google Scholar 

  • Nagy Z, Esiri MM, Jobst KA, Morris JH, King EM, McDonald B, Litchfield S, Barnetson L (1996) Clustering of pathological features in Alzheimer’s disease: clinical and neuroanatomical aspects. Dementia 7:121–127

    CAS  PubMed  Google Scholar 

  • Ono K, Nakamura A, Yoshiyama K, Kinkori T, Bundo M, Kato T, Ito K (2011) The effect of musical experience on hemispheric lateralization in musical feature processing. Neurosci Lett 496(2):141–145

    Article  CAS  PubMed  Google Scholar 

  • Opris I, Hampson RE, Gerhardt GA, Berger TW, Deadwyler SA (2012) Columnar processing in primate pFC: evidence for executive control microcircuits. J Cogn Neurosci 24(12):2334–2347

    Article  PubMed Central  PubMed  Google Scholar 

  • Paulsen JS, Romero R, Chan A, Davis AV, Heaton RK, Jeste DV (1996) Impairment in the semantic network in schizophrenia. Psychiatry Res 63:109–121

    Article  CAS  PubMed  Google Scholar 

  • Pearlson GD, Barta PE, Powers RE, Menon RR, Richards SS, Aylward EH et al (1997) Ziskind-Somerfeld research award 1996. Medial and superior temporal gyral volumes and cerebral asymmetry in schizophrenia versus bipolar disorder. Biol Psychiatry 41:1–14

    Article  CAS  PubMed  Google Scholar 

  • Pujol J, Vendrell P, Junque C, Marti-Vilalta JL, Capdevila A (1993) When does human brain development end? Evidence of corpus callosum growth up to adulthood. Ann Neurol 34:71–75

    Article  CAS  PubMed  Google Scholar 

  • Radenahmad N, Neal JW, Wilcock GW, Pearson RCA (2003) A neurofilament antibody recognizes a subset of pyramidal cells in the human neocortex that are preserved in Alzheimer’s disease. Neuropathol Appl Neurobiol 29:316–320

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383–388

    Article  CAS  PubMed  Google Scholar 

  • Ramoa AS, Mower AF, Liao D, Jafri SI (2001) Suppression of cortical NMDA receptor function prevents development of orientation selectivity in the primary visual cortex. J Neurosci 21:4299–4309

    CAS  PubMed  Google Scholar 

  • Robson H, Keidel JL, Ralph MA, Sage K (2012) Revealing and quantifying the impaired phonological analysis underpinning impaired comprehension in Wernicke’s aphasia. Neuropsychologia 50:276–288

    Article  PubMed  Google Scholar 

  • Rojas DC, Teale P, Sheeder J, Simon J, Reite M (1997) Sex-specific expression of Heschl’s gyrus functional and structural abnormalities in paranoid schizophrenia. Am J Psychiatry 154:1655–1662

    CAS  PubMed  Google Scholar 

  • Ropohl A, Sperling W, Elstner S, Tomandl B, Reulbach U, Kaltenhauser M et al (2004) Cortical activity associated with auditory hallucinations. Neuroreport 15:523–526

    Article  PubMed  Google Scholar 

  • Rossell SL, Rabe-Hesketh S, Shapleske J, David AS (1999) Is semantic fluency differentially impaired in schizophrenic patients with delusions? J Clin Exp Neuropsychol 21(5):629–642

    Article  CAS  PubMed  Google Scholar 

  • Rossion B, Dricot L, Devolder A, Bodart J-M, Crommelinck M, de Gelder B, Zoontjes R (2000) Hemispheric asymmetries for whole-based and part-based face processing in the human fusiform gyrus. J Cogn Neurosci 12(5):793–802

    Article  CAS  PubMed  Google Scholar 

  • Seldon HL (1981a) Structure of human auditory cortex: I. Cytoarchitectonics and dendritic distributions. Brain Res 229:277–294

    Article  CAS  PubMed  Google Scholar 

  • Seldon HL (1981b) Structure of human auditory cortex: II. Axon distributions and morphological correlates of speech perception. Brain Res 229:295–310

    Article  CAS  PubMed  Google Scholar 

  • Shepard RN (1987) Toward a universal law of generalization for psychological science. Science 237(4820):1317–1323

    Article  CAS  PubMed  Google Scholar 

  • Shergill SS, Brammer MJ, Williams SC, Murray RM, McGuire PK (2000) Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch Gen Psychiatry 57:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Simper R, Walker MA, Black G, Di Rosa E, Crow TJ, Chance SA (2011) The relationship between callosal axons and cortical neurons in the planum temporale: alterations in schizophrenia. Neurosci Res 71(2011):405–410

    Article  CAS  PubMed  Google Scholar 

  • Spironelli C, Angrilli A, Stegagno L (2008) Failure in language lateralization in schizophrenia patients: an ERP study on early linguistic components. J Psychiatry Neurosci 33(3):235–243

    PubMed Central  PubMed  Google Scholar 

  • Steinerman JR (2010) Minding the aging brain: technology-enabled cognitive training for healthy elders. Curr Neurol Neurosci Rep 10:374–380

    Article  PubMed  Google Scholar 

  • Stephan KE, Baldeweg T, Friston KJ (2006) Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry 59(10):929–939

    Article  CAS  PubMed  Google Scholar 

  • Stern Y (2009) Cognitive reserve. Neuropsychologia 47:2015–2028

    Article  PubMed Central  PubMed  Google Scholar 

  • Sweet RA, Pierri JN, Auh S, Sampson AR, Lewis DA (2003) Reduced pyramidal cell somal volume in auditory association cortex of subjects with schizophrenia. Neuropsychopharmacology 28:599–609

    Article  PubMed  Google Scholar 

  • Taubert J, Parr LA (2010) Geometric distortions affect face recognition in chimpanzees (Pan troglodytes) and monkeys (Macaca mulatta). Anim Cogn 14:35–43

    Article  PubMed Central  PubMed  Google Scholar 

  • Taylor K, Brugger P, Weniger D, Regard M (1999) Qualitative hemispheric differences in semantic category matching. Brain Lang 70:119–131

    Article  CAS  PubMed  Google Scholar 

  • Toga AW, Thompson PM, Sowell ER (2006) Mapping brain maturation. Trends Neurosci 29:148–159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tremblay P, Deschamps I, Gracco VL (2013) Regional heterogeneity in the processing and the production of speech in the human planum temporale. Cortex 49:143–157

    Article  PubMed  Google Scholar 

  • Tucker AM, Stern Y (2011) Cognitive reserve in aging. Curr Alzheimer Res 8(4):354–360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Veluw SJ, Sawyer EK, Clover L, Cousijn H, De Jager C, Esiri MM, Chance SA (2012) Prefrontal cortex cytoarchitecture in normal aging and Alzheimer’s disease: a relationship with IQ. Brain Struct Funct 217(4):797–808

    Article  Google Scholar 

  • Wang HY, Lee DH, Davis CB, Shank RP (2000) Amyloid peptide Abeta(1–42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem 75:1155–1161

    Article  CAS  PubMed  Google Scholar 

  • Weisbrod M, Maier S, Harig S, Himmelsbach U, Spitzer M (1998) Lateralized semantic and indirect semantic priming effects in people with schizophrenia. Br J Psychiatry 172:142–146

    Article  CAS  PubMed  Google Scholar 

  • Wynn ZJ, Cummings JL (2004) Cholinesterase inhibitor therapies and neuropsychiatric manifestations of Alzheimer’s disease. Dement Geriatr Cogn Disord 17:100–108

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Huguenard JR, Prince DA (1998) Cholinergic switching within neocortical inhibitory networks. Science 281:985–988

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Song Y, Hu S, Li X, Tian M, Zhen Z, Dong Q, Kanwisher N, Liu J (2010) Heritability of the specific cognitive ability of face perception. Curr Biol 20(2):137–142

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Chance D.Phil. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chance, S. (2015). Cytoarchitectural Modules: Functional Specialisation and Disruption in Neuropsychiatric Disorders. In: Casanova, M., Opris, I. (eds) Recent Advances on the Modular Organization of the Cortex. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9900-3_11

Download citation

Publish with us

Policies and ethics