Skip to main content

Sentinel Gene Within Cell Territory and Molecular Platforms in Cancer: Methylation Diversity of p53 Gene in Brain Tumors

  • Chapter
  • First Online:
Epigenetics Territory and Cancer

Abstract

TP53 is the most important tumor suppressor gene which plays critical functions to avoid tumor progression and development through inducing the DNA repair pathways or cell cycle arrest. High frequency of p53 gene aberrations in various types of cancer has relied on its significant roles in prevention of arising tumors. However, the effect of promoter methylation of this gene on its protein expression and function remains unclear and there is a strong controversy among various investigations especially those studies performed on brain tumors.

TP53 may be the most frequent gene which was studied in different aspects of cancer biology and therefore a considerable literature is available. In this chapter, we tried to provide a brief explanation about the basic knowledge which was found in investigations either at p53 gene- or protein- level and then its function and aberrations in various cancers will be described. Finally, we will discuss about the methylation status of p53 gene promoter in different types of cancers with emphasizing on brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

53BP1:

53 binding protein 1

CPE:

Core promoter element

CPT1:

Carnitine palmitoyltransferase

COX:

Cytochrome c oxidase

CRM1:

Chromosomal region maintenance 1

C-terminal:

Carboxy-terminal

DBD:

DNA binding domain

ECM:

Extracellular matrix

ER:

Estrogen receptor

FAS:

Fatty acid synthase

GAMT:

Guanidinoacetate methyltransferase

GLS2:

Glutaminase 2

HK2:

Hexokinase 2

ISRE:

Interferon stimulated response element

MPF:

Maturation-promoting factor

mTORC1:

Mammalian target of rapamycin1

NADPH:

Nicotinamide adenine dinucleotide phosphate

NLS:

Nuclear localization signals

N-terminal:

NH3 terminal

PGM:

Phosphoglycerate mutase

PKC δ:

Protein kinase C δ

PP genotype:

Proline proline genotype

PPP:

Pentose phosphate pathway

PUMA:

p53 upregulated modulator of apoptosis

PRD:

Proline rich domain

PRMTs:

Protein arginine methyltransferases

OD:

Oligomerization domain

ROS:

Reactive oxygen species

SAHFs:

Senescence associated heterochromatin foci

SCO2:

Cytochrome c oxidase

Sp1:

Specificity protein 1

TSC2:

Tuberous sclerosis complex 2

TIGAR:

TP53-induced glycolysis regulator

References

  • Aas T, Borresen AL, Geisler S, Smith-Sorensen B, Johnsen H, Varhaug JE et al (1996) Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 2:811–814

    CAS  PubMed  Google Scholar 

  • Agirre X, Vizmanos JL, Calasanz MJ, Garcia-Delgado M, Larrayoz MJ, Novo FJ (2003b) Methylation of CpG dinucleotides and/or CCWGG motifs at the promoter of TP53 correlates with decreased gene expression in a subset of acute lymphoblastic leukemia patients. Oncogene 22(7):1070–1072. doi:10.1038/sj.onc.1206236

    CAS  PubMed  Google Scholar 

  • Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T et al (2007) New nomenclature for chromatin-modifying enzymes. Cell 131:633–636

    CAS  PubMed  Google Scholar 

  • Almeida LO, Custodio AC, Pinto GR, Santos MJ, Almeida JR, Clara CA et al (2009) Polymorphisms and DNA methylation of gene TP53 associated with extra-axial brain tumors. Genet Mol Res 8(1):8–18

    CAS  PubMed  Google Scholar 

  • Alo PL, Visca P, Marci A, Mangoni A, Botti C, Di Tondo U (1996) Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer 77:474–482

    CAS  PubMed  Google Scholar 

  • Alonso ME, Bello MJ, Gonzalez-Gomez P, Arjona D, Lomas J, de Campos JM et al (2003) Aberrant promoter methylation of multiple genes in oligodendrogliomas and ependymomas. Cancer Genet Cytogenet 144(2):134–142

    CAS  PubMed  Google Scholar 

  • Amatya VJ, Naumann U, Weller M, Ohgaki H (2005) TP53 promoter methylation in human gliomas. Acta Neuropathol 110(2):178–184. doi:10.1007/s00401-005-1041-5

    CAS  PubMed  Google Scholar 

  • An W, Kim J, Roeder RG (2004) Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117:735–748

    CAS  PubMed  Google Scholar 

  • Artandi SE, DePinho RA (2010) Telomeres and telomerase in cancer. Carcinogenesis 31(1):9–18. doi:10.1093/carcin/bgp268

    PubMed Central  CAS  PubMed  Google Scholar 

  • Avci CB, Susluer SY, Dodurga Y, Akalin T, Cogulu O, Dalbasti T, Oktar N, Gunduz C (2011) The emphasis of tumor suppressor genes and oncogenes in diagnosis and prognosis of anaplastic brain tumors. J Neurol Sci (Turkish) 28(4):563–580

    Google Scholar 

  • Bartek J, Bartkova J, Vojtesek B, Staskova Z, Lukas J, Rejthar A et al (1991) Aberrant expression of the p53 oncoprotein is a common feature of a wide spectrum of human malignancies. Oncogene 6:1699–1703

    CAS  PubMed  Google Scholar 

  • Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120

    CAS  PubMed  Google Scholar 

  • Bergamaschi D, Gasco M, Hiller L, Sullivan A, Syed N, Trigiante G et al (2003) p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 3:387–402

    CAS  PubMed  Google Scholar 

  • Bergamaschi D, Samuels Y, Sullivan A, Zvelebil M, Breyssens H, Bisso A et al (2006) iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nat Genet 38:1133–1141

    CAS  PubMed  Google Scholar 

  • Blandino G, Levine AJ, Oren M (1999) Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18:477–485

    CAS  PubMed  Google Scholar 

  • Bode AM, Dong Z (2004) Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4:793–805

    CAS  PubMed  Google Scholar 

  • Boersma BJ, Howe TM, Goodman JE, Yfantis HG, Lee DH, Chanock SJ et al (2006) Association of breast cancer outcome with status of p53 and MDM2 SNP309. J Natl Cancer Inst 98:911–919

    CAS  PubMed  Google Scholar 

  • Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602

    CAS  PubMed  Google Scholar 

  • Bond GL, Hirshfield KM, Kirchhoff T, Alexe G, Bond EE, Robins H et al (2006) MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner. Cancer Res 66:5104–5110

    CAS  PubMed  Google Scholar 

  • Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP et al (2005) p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19:2122–2137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brand KA, Hermfisse U (1997) Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J 11:388–395

    Google Scholar 

  • Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9:701–713

    CAS  PubMed  Google Scholar 

  • Brown MA, Sims RJ, 3rd, Gottlieb PD, Tucker PW (2006) Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer 5:26

    Google Scholar 

  • Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ (1995) Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377:552–557

    CAS  PubMed  Google Scholar 

  • Budanov AV, Shoshani T, Faerman A, Zelin E, Kamer I, Kalinski H et al (2002) Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene 21:6017–6031

    CAS  PubMed  Google Scholar 

  • Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM (2004) Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304:596–600

    CAS  PubMed  Google Scholar 

  • Bustamante E, Pedersen PL (1977) High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci U S A 74:3735–3739

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buzzai M, Bauer DE, Jones RG, Deberardinis RJ, Hatzivassiliou G, Elstrom RL et al (2005) The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24:4165–4173

    CAS  PubMed  Google Scholar 

  • Campisi J (2003) Cancer and ageing: rival demons? Nat Rev Cancer 3:339–349

    CAS  PubMed  Google Scholar 

  • Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    CAS  PubMed  Google Scholar 

  • Cao L, Wenmei L Kim S, Brodie SG, Deng CX (2003) Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev 17(2):201–213

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cao L, Kim S, Xiao C, Wang RH, Coumoul X, Wang X et al (2006) ATM-Chk2-p53 activation prevents tumorigenesis at an expense of organ homeostasis upon Brca1 deficiency. EMBO J 25:2167–2177

    PubMed Central  CAS  PubMed  Google Scholar 

  • Caron de Fromentel C, Soussi T (1992) TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes Chromosomes Cancer 4:1–15

    CAS  PubMed  Google Scholar 

  • Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B (1999) 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401:616–620

    CAS  PubMed  Google Scholar 

  • Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT et al (1999) Regulation of transcription by a protein methyltransferase. Science 284:2174–2177

    CAS  PubMed  Google Scholar 

  • Chen J, Ruan H, Ng SM, Gao C, Soo HM, Wu W et al (2005) Loss of function of def selectively up-regulates Delta113p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev 19:2900–2911

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen J, Ng SM, Chang C, Zhang Z, Bourdon JC, Lane DP et al (2009) p53 isoform delta113p53 is a p53 target gene that antagonizes p53 apoptotic activity via BclxL activation in zebrafish. Genes Dev 23:278–290

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR (2005) PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309:1732–1735

    CAS  PubMed  Google Scholar 

  • Clair St, Manfredi JJ (2006) The dual specificity phosphatase Cdc25C is a direct target for transcriptional repression by the tumor suppressor p53. Cell Cycle 5:709–713

    Google Scholar 

  • Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML et al (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362:849–852

    CAS  PubMed  Google Scholar 

  • Crook T, Crossland S, Crompton MR, Osin P, Gusterson BA (1997) p53 mutations in BRCA1-associated familial breast cancer. Lancet 350:638–639

    CAS  PubMed  Google Scholar 

  • Denissenko MF, Pao A, Tang M, Pfeifer GP (1996) Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274:430–432

    CAS  PubMed  Google Scholar 

  • Denissenko MF, Chen JX, Tang MS, Pfeifer GP (1997) Cytosine methylation determines hot spots of DNA damage in the human P53 gene. Proc Natl Acad Sci U S A 94:3893–3898

    PubMed Central  CAS  PubMed  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS et al (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356(6366):215–221. doi:10.1038/356215a0

    CAS  PubMed  Google Scholar 

  • Dumont P, Leu JI, Della Pietra AC, 3rd, George DL, Murphy M (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33:357–365

    Google Scholar 

  • Felley-Bosco E, Weston A, Cawley HM, Bennett WP, Harris CC (1993) Functional studies of a germ-line polymorphism at codon 47 within the p53 gene. Am J Hum Genet 53:752–759

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feng Z, Jin S, Zupnick A, Hoh J, de Stanchina E, Lowe S et al (2006) p53 tumor suppressor protein regulates the levels of huntingtin gene expression. Oncogene 25:1–7

    PubMed  Google Scholar 

  • Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22:9030–9040

    CAS  PubMed  Google Scholar 

  • Garcia PB, Attardi LD (2014) Illuminating p53 function in cancer with genetically engineered mouse models. Semin Cell Dev Biol 27c:74–85

    Google Scholar 

  • Garcia-Cao M, Gonzalo S, Dean D, Blasco MA (2002) A role for the Rb family of proteins in controlling telomere length. Nat Genet 32(3):415–419. doi:10.1038/ng1011

    CAS  PubMed  Google Scholar 

  • Giono LE, Manfredi JJ (2006) The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 209:13–20

    CAS  PubMed  Google Scholar 

  • Gonzalez-Gomez P, Bello MJ, Arjona D, Lomas J, Alonso ME, De Campos JM et al (2003a) Promoter hypermethylation of multiple genes in astrocytic gliomas. Int J Oncol 22:601–608

    CAS  PubMed  Google Scholar 

  • Gonzalez-Gomez PB, Lomas MJ, Arjona D, Alonso ME, Amiñoso C, Lopez-Marin I, Anselmo NP, Sarasa JL, Gutierrez M, Casartelli C, Rey JA (2003b) Aberrant methylation of multiple genes in neuroblastic tumours. relationship with MYCN amplification and allelic status at 1p. Eur J Cancer 39(10):1478–1485

    CAS  PubMed  Google Scholar 

  • Gottlieb E, Vousden KH (2010) p53 regulation of metabolic pathways. Cold Spring Harb Perspect Biol 2:a001040

    PubMed Central  PubMed  Google Scholar 

  • Grochola LF, Zeron-Medina J, Meriaux S, Bond GL (2010) Single-nucleotide polymorphisms in the p53 signaling pathway. Cold Spring Harb Perspect Biol 2:a001032

    PubMed Central  PubMed  Google Scholar 

  • Guo Y, Zhang H, Chen X, Yang X, Cheng W, Zhao K (2012) Association of TP53 polymorphisms with primary open-angle glaucoma: a meta-analysis. Invest Ophthalmol Vis Sci 53:3756–3763

    CAS  PubMed  Google Scholar 

  • Han HS, Yu E, Song JY, Park JY, Jang SJ, Choi J (2009) The estrogen receptor alpha pathway induces oncogenic Wip1 phosphatase gene expression. Mol Cancer Res 7:713–723

    CAS  PubMed  Google Scholar 

  • Hardie DG (2004) The AMP-activated protein kinase pathway–new players upstream and downstream. J Cell Sci 117:5479–5487

    CAS  PubMed  Google Scholar 

  • Harris N, Brill E, Shohat O, Prokocimer M, Wolf D, Arai N et al (1986) Molecular basis for heterogeneity of the human p53 protein. Mol Cell Biol 6:4650–4656

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harris SL, Gil G, Robins H, Hu W, Hirshfield K, Bond E et al (2005) Detection of functional single-nucleotide polymorphisms that affect apoptosis. Proc Natl Acad Sci U S A 102:16297–16302

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    CAS  PubMed  Google Scholar 

  • Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S et al (1997) 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1:3–11

    CAS  PubMed  Google Scholar 

  • Hernandez-Acosta NC, Cabrera-Socorro A, Morlans MP, Delgado FJ, Suarez-Sola ML, Sottocornola R et al (2011) Dynamic expression of the p53 family members p63 and p73 in the mouse and human telencephalon during development and in adulthood. Brain Res 1372:29–40. doi:10.1016/j.brainres.2010.11.041

    CAS  PubMed  Google Scholar 

  • Hinds PW, Finlay CA, Quartin RS, Baker SJ, Fearon ER, Vogelstein B et al (1990) Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the “hot spot” mutant phenotypes. Cell Growth Differ 1:571–580

    CAS  PubMed  Google Scholar 

  • Hou J, Jiang Y, Tang W, Jia S (2013) p53 codon 72 polymorphism and breast cancer risk: a meta-analysis. Exp Ther Med 5:1397–1402

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu W, Feng Z, Ma L, Wagner J, Rice JJ, Stolovitzky G et al (2007) A single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells. Cancer Res 67:2757–2765

    CAS  PubMed  Google Scholar 

  • Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci U S A 107:7455–7460

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA et al (2006) Repression of p53 activity by Smyd2-mediated methylation. Nature 444:629–632

    CAS  PubMed  Google Scholar 

  • Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M et al (2007) p53 is regulated by lysine demethylase LSD1. Nature 449:105–8

    Google Scholar 

  • Huang J, Chen K, Huang J, Gong W, Dunlop NM, Howard OM et al (2009) Regulation of the leucocyte chemoattractant receptor FPR in glioblastoma cells by cell differentiation. Carcinogenesis 30(2):348–355. doi:10.1093/carcin/bgn266

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hurt EM, Thomas SB, Peng B, Farrar WL (2006) Reversal of p53 epigenetic silencing in multiple myeloma permits apoptosis by a p53 activator. Cancer Biol Ther 5(9):1154–1160

    CAS  PubMed  Google Scholar 

  • Ide T, Brown-Endres L, Chu K, Ongusaha PP, Ohtsuka T, El-Deiry WS et al (2009) GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress. Mol Cell 36:379–392

    PubMed Central  CAS  PubMed  Google Scholar 

  • Imamura K, Ogura T, Kishimoto A, Kaminishi M, Esumi H (2001) Cell cycle regulation via p53 phosphorylation by a 5’-AMP activated protein kinase activator, 5-aminoimidazole- 4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem Biophys Res Commun 287:562–567

    CAS  PubMed  Google Scholar 

  • Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    CAS  PubMed  Google Scholar 

  • Ivanov GS, Kurash J, Chuikov S, Gizatullin F, Herrera-Medina EM, Rauscher Fr et al (2007) Methylation-acetylation interplay activates p53 in response to DNA damage. Mol Cell Biol 27:6756–6769

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J et al (2003) Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4:321–328

    CAS  PubMed  Google Scholar 

  • Jia S, Xu L, Chan Y, Wu X, Yang S, Yu H et al (2012) p53 codon 72 polymorphism and endometriosis: a meta-analysis. Arch Gynecol Obstet 285:1657–1661

    CAS  PubMed  Google Scholar 

  • Joerger AC, Allen MD, Fersht AR (2004) Crystal structure of a superstable mutant of human p53 core domain. Insights into the mechanism of rescuing oncogenic mutations. J Biol Chem 279:1291–1296

    CAS  PubMed  Google Scholar 

  • Johannessen AL, Torp SH (2006) The clinical value of Ki-67/MIB-1 labeling index in human astrocytomas. Pathol Oncol Res 12(3):143–147. doi:Paor.2006.12.3.0143

    PubMed  Google Scholar 

  • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y et al (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18:283–293

    CAS  PubMed  Google Scholar 

  • Kang JH, Kim SJ, Noh DY, Park IA, Choe KJ, Yoo OJ et al (2001) Methylation in the p53 promoter is a supplementary route to breast carcinogenesis: correlation between CpG methylation in the p53 promoter and the mutation of the p53 gene in the progression from ductal carcinoma in situ to invasive ductal carcinoma. Lab Invest 81(4):573–579

    CAS  PubMed  Google Scholar 

  • Kashima T, Makino K, Soemantri A, Ishida T (2007) TP53 codon 72 polymorphism in 12 populations of insular Southeast Asia and Oceania. J Hum Genet 52(8):694–697. doi:10.1007/s10038-007-0168-8

    CAS  PubMed  Google Scholar 

  • Kheirollahi M, Mehrazin M, Kamalian N, Mehdipour P (2010) Alterations of telomere length in human brain tumors. Med Oncol 28(3):864–870. doi:10.1007/s12032-010-9506-3

    PubMed  Google Scholar 

  • Kheirollahi M, Mehr-Azin M, Kamalian N, Mehdipour P (2011) Expression of cyclin D2, P53, Rb and ATM cell cycle genes in brain tumors. Med Oncol 28(1):7–14. doi:10.1007/s12032-009-9412-8

    CAS  PubMed  Google Scholar 

  • Kirch HC, Flaswinkel S, Rumpf H, Brockmann D, Esche H (1999) Expression of human p53 requires synergistic activation of transcription from the p53 promoter by AP-1, NF-kappaB and Myc/Max. Oncogene 18:2728–2738

    CAS  PubMed  Google Scholar 

  • Konishi M, Kikuchi-Yanoshita R, Tanaka K, Muraoka M, Onda A, Okumura Y et al (1996) Molecular nature of colon tumors in hereditary nonpolyposis colon cancer, familial polyposis, and sporadic colon cancer. Gastroenterology 111:307–317

    CAS  PubMed  Google Scholar 

  • Kontorovich T, Cohen Y, Nir U, Friedman E (2009) Promoter methylation patterns of ATM, ATR, BRCA1, BRCA2 and p53 as putative cancer risk modifiers in Jewish BRCA1/BRCA2 mutation carriers. Breast Cancer Res Treat 116:195–200

    CAS  PubMed  Google Scholar 

  • Kouidou S, Malousi A, Maglaveras N (2009) Li-Fraumeni and Li-Fraumeni-like syndrome mutations in p53 are associated with exonic methylation and splicing regulatory elements. Mol Carcinog 48:895–902

    CAS  PubMed  Google Scholar 

  • Krizhanovsky V, Xue W, Zender L, Yon M, Hernando E, Lowe SW (2008) Implications of cellular senescence in tissue damage response, tumor suppression, and stem cell biology. Cold Spring Harb Symp Quant Biol 73:513–522

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB et al (2004) Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 36:147–150

    CAS  PubMed  Google Scholar 

  • Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263

    CAS  PubMed  Google Scholar 

  • Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al (2004) Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119:861–872

    CAS  PubMed  Google Scholar 

  • Lanni C, Racchi M, Uberti D, Mazzini G, Stanga S, Sinforiani E et al (2008) Pharmacogenetics and pharmagenomics, trends in normal and pathological aging studies: focus on p53. Curr Pharm Des 14(26):2665–2671

    CAS  PubMed  Google Scholar 

  • Levine AJ, Wu MC, Chang A, Silver A, Attiyeh EF, Lin J et al (1995) The spectrum of mutations at the p53 locus. Evidence for tissue-specific mutagenesis, selection of mutant alleles, and a “gain of function” phenotype. Ann N Y Acad Sci 768:111–28

    Google Scholar 

  • Li FP, Fraumeni JF Jr (1969a) Rhabdomyosarcoma in children: epidemiologic study and identification of a familial cancer syndrome. J Natl Cancer Inst 43:1365–1373

    CAS  PubMed  Google Scholar 

  • Li FP, Fraumeni JF Jr (1969b) Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann Intern Med 71:747–752

    CAS  PubMed  Google Scholar 

  • Li X, Dumont P, Della Pietra A, Shetler C, Murphy ME (2005) The codon 47 polymorphism in p53 is functionally significant. J Biol Chem 280:24245–24251

    CAS  PubMed  Google Scholar 

  • Liu H, Lu ZG, Miki Y, Yoshida K (2007) Protein kinase C delta induces transcription of the TP53 tumor suppressor gene by controlling death-promoting factor Btf in the apoptotic response to DNA damage. Mol Cell Biol 27:8480–8491

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lozano G (2007) The oncogenic roles of p53 mutants in mouse models. Curr Opin Genet Dev 17:66–70

    CAS  PubMed  Google Scholar 

  • Lozano G (2010) Mouse models of p53 functions. Cold Spring Harb Perspect Biol 2:a001115

    PubMed Central  PubMed  Google Scholar 

  • Lu X (2010) Tied up in loops: positive and negative autoregulation of p53. Cold Spring Harb Perspect Biol 2:a000984

    PubMed Central  PubMed  Google Scholar 

  • Ma W, Sung HJ, Park JY, Matoba S, Hwang PM (2007) A pivotal role for p53: balancing aerobic respiration and glycolysis. J Bioenerg Biomembr 39:243–246

    CAS  PubMed  Google Scholar 

  • Maier B, Gluba W, Bernier B, Turner T, Mohammad K, Guise T et al (2004) Modulation of mammalian life span by the short isoform of p53. Genes Dev 18:306–319

    PubMed Central  CAS  PubMed  Google Scholar 

  • Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238

    CAS  PubMed  Google Scholar 

  • Martín-Caballero J, Flores JM, García-Palencia P, Serrano M (2001) Tumor susceptibility of p21Waf1/Cip1-deficient mice. Cancer Res 61(16):6234–6238

    PubMed  Google Scholar 

  • Matheu A, Maraver A, Serrano M (2008) The Arf/p53 pathway in cancer and aging. Cancer Res 68(15):6031–6034. doi:10.1158/0008-5472.can-07-6851

    CAS  PubMed  Google Scholar 

  • Mathupala SP, Heese C, Pedersen PL (1997) Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem 272:22776–22780

    CAS  PubMed  Google Scholar 

  • Medrano S, Burns-Cusato M, Atienza MB, Rahimi D, Scrable H (2009) Regenerative capacity of neural precursors in the adult mammalian brain is under the control of p53. Neurobiol Aging 30:483–497

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meek DW, Anderson CW (2009) Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1:a000950

    PubMed Central  PubMed  Google Scholar 

  • Menendez D, Krysiak O, Inga A, Krysiak B, Resnick MA, Schonfelder G (2006) A SNP in the flt-1 promoter integrates the VEGF system into the p53 transcriptional network. Proc Natl Acad Sci U S A 103:1406–1411

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590

    CAS  PubMed  Google Scholar 

  • Mills AA, Zheng B, Wang X-J, Vogel H, Roop DR, Bradley A (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398(6729):708–713. doi:10.1038/19531

    CAS  PubMed  Google Scholar 

  • Narita M, Narita M, Krizhanovsky V, Nunez S, Chicas A, Hearn SA et al (2006) A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126:503–514

    CAS  PubMed  Google Scholar 

  • Neduva V, Russell RB (2005) Linear motifs: evolutionary interaction switches. FEBS Lett 579(15)3342–3345. doi:http://dx.doi.org/10.1016/j.febslet.2005.04.005

    CAS  PubMed  Google Scholar 

  • Neduva V, Russell RB (2006) DILIMOT: discovery of linear motifs in proteins. Nucleic Acids Res 34(Web Server issue):W350–355

    PubMed Central  CAS  PubMed  Google Scholar 

  • Neduva VL, Su-Angrand R, Stark I, Masi A de, Gibson F, Lewis TJ, Serrano J, Russell L, R. B (2005a) Systematic discovery of new recognition peptides mediating protein interaction networks. PLoS Biol 3(12):e405

    PubMed Central  PubMed  Google Scholar 

  • Neduva V, Linding R, Su-Angrand I, Stark A, de Masi F, Gibson TJ et al (2005b) Systematic discovery of new recognition peptides mediating protein interaction networks. PLoS Biol 3(12):e405. doi:10.1371/journal.pbio.0030405

    PubMed Central  PubMed  Google Scholar 

  • Olivier M, Hussain SP, Caron de Fromentel C, Hainaut P, Harris CC (2004) TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci Publ 157:247–270

    Google Scholar 

  • Ory K, Legros Y, Auguin C, Soussi T (1994) Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation. EMBO J 13:3496–3504

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perry ME (2010) The regulation of the p53-mediated stress response by MDM2 and MDM4. Cold Spring Harb Perspect Biol 2:a000968

    PubMed Central  PubMed  Google Scholar 

  • Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–2165

    CAS  PubMed  Google Scholar 

  • Pfeffer LM, Dinarello CA, Herberman RB, Williams BR, Borden EC, Bordens R et al (1998) Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons. Cancer Res 58:2489–2499

    CAS  PubMed  Google Scholar 

  • Pharoah PD, Day NE, Caldas C (1999) Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis. Br J Cancer 80:1968–1973

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pogribny IP, Pogribna M, Christman JK, James SJ (2000) Single-site methylation within the p53 promoter region reduces gene expression in a reporter gene construct: possible in vivo relevance during tumorigenesis. Cancer Res 60:588–594

    CAS  PubMed  Google Scholar 

  • Raman V, Martensen SA, Reisman D, Evron E, Odenwald WF, Jaffee E et al (2000) Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 405:974–978

    CAS  PubMed  Google Scholar 

  • Reisman D, Elkind NB, Roy B, Beamon J, Rotter V (1993) c-Myc trans-activates the p53 promoter through a required downstream CACGTG motif. Cell Growth Differ 4:57–65

    CAS  PubMed  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412

    CAS  PubMed  Google Scholar 

  • Rippin TM, Freund SM, Veprintsev DB, Fersht AR (2002) Recognition of DNA by p53 core domain and location of intermolecular contacts of cooperative binding. J Mol Biol 319:351–358

    CAS  PubMed  Google Scholar 

  • Robles AI, Harris CC (2010) Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol 2:a001016

    PubMed Central  PubMed  Google Scholar 

  • Ronen D, Rotter V, Reisman D (1991) Expression from the murine p53 promoter is mediated by factor binding to a downstream helix-loop-helix recognition motif. Proc Natl Acad Sci U S A 88:4128–4132

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roninson IB (2003) Tumor cell senescence in cancer treatment. Cancer Res 63:2705–2715

    CAS  PubMed  Google Scholar 

  • Roy B, Beamon J, Balint E, Reisman D (1994) Transactivation of the human p53 tumor suppressor gene by c-Myc/Max contributes to elevated mutant p53 expression in some tumors. Mol Cell Biol 14:7805–7815

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182(3)311–322. doi:10.1002/(sici)1097-4652(200003)182:3<311::aid-jcp1>3.0.co;2-9

    CAS  PubMed  Google Scholar 

  • Schroeder M, Mass MJ (1997) CpG methylation inactivates the transcriptional activity of the promoter of the human p53 tumor suppressor gene. Biochem Biophys Res Commun 235:403–406

    CAS  PubMed  Google Scholar 

  • Scoumanne A, Chen X (2007) The lysine-specific demethylase 1 is required for cell proliferation in both p53-dependent and -independent manners. J Biol Chem 282:15471–15475

    CAS  PubMed  Google Scholar 

  • Selivanova G, Iotsova V, Okan I, Fritsche M, Strom M, Groner B et al (1997) Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat Med 3:632–638

    CAS  PubMed  Google Scholar 

  • Shen EC, Henry MF, Weiss VH, Valentini SR, Silver PA, Lee MS (1998) Arginine methylation facilitates the nuclear export of hnRNP proteins. Genes Dev 12:679–691

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shen KC, Heng H, Wang Y, Lu S, Liu G, Deng CX et al (2005) ATM and p21 cooperate to suppress aneuploidy and subsequent tumor development. Cancer Res 65(19):8747–8753. doi:10.1158/0008-5472.can-05-1471

    CAS  PubMed  Google Scholar 

  • Shi X, Kachirskaia I, Yamaguchi H, West LE, Wen H, Wang EW et al (2007) Modulation of p53 function by SET8-mediated methylation at lysine 382. Mol Cell 27:636–646

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shi M, Huang R, Pei C, Jia X, Jiang C, Ren H (2012) TP53 codon 72 polymorphism and glioma risk: a meta-analysis. Oncol Lett 3:599–606

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sidhu S, Martin E, Gicquel C, Melki J, Clark SJ, Campbell P et al (2005) Mutation and methylation analysis of TP53 in adrenal carcinogenesis. Eur J Surg Oncol 31(5):549–554. doi:10.1016/j.ejso.2005.01.013

    CAS  PubMed  Google Scholar 

  • Smela ME, Currier SS, Bailey EA, Essigmann JM (2001) The chemistry and biology of aflatoxin B1: from mutational spectrometry to carcinogenesis. Carcinogenesis 22:535–545

    CAS  PubMed  Google Scholar 

  • Soto-Reyes E, Recillas-Targa F (2010) Epigenetic regulation of the human p53 gene promoter by the CTCF transcription factor in transformed cell lines. Oncogene 29(15):2217–2227. doi:10.1038/onc.2009.509

    CAS  PubMed  Google Scholar 

  • Soussi T, Beroud C (2001) Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 1:233–240

    CAS  PubMed  Google Scholar 

  • Soussi T, Beroud C (2003) Significance of TP53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides. Hum Mutat 21:192–200

    CAS  PubMed  Google Scholar 

  • Stewart SA, Weinberg RA (2006) Telomeres: cancer to human aging. Annu Rev Cell Dev Biol 22:531–557

    CAS  PubMed  Google Scholar 

  • Strano S, Dell’Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G (2007) Mutant p53: an oncogenic transcription factor. Oncogene 26:2212–2219

    CAS  PubMed  Google Scholar 

  • Su CH, Shann YJ, Hsu MT (2009) p53 chromatin epigenetic domain organization and p53 transcription. Mol Cell Biol 29:93–103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Swinnen JV, Esquenet M, Goossens K, Heyns W, Verhoeven G (1997) Androgens stimulate fatty acid synthase in the human prostate cancer cell line LNCaP. Cancer Res 57:1086–1090

    CAS  PubMed  Google Scholar 

  • Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H et al (2003) Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 424:516–523

    CAS  PubMed  Google Scholar 

  • Tang W, Zhou X, Chan Y, Wu X, Luo Y (2011) p53 codon 72 polymorphism and recurrent pregnancy loss: a meta-analysis. J Assist Reprod Genet 28:965–969

    PubMed Central  PubMed  Google Scholar 

  • Teufel DP, Freund SM, Bycroft M, Fersht AR (2007) Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc Natl Acad Sci U S A 104:7009–7014

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H et al (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415:45–53

    CAS  PubMed  Google Scholar 

  • Vakifahmetoglu-Norberg H, Kim M, Xia HG, Iwanicki MP, Ofengeim D, Coloff JL et al (2013) Chaperone-mediated autophagy degrades mutant p53. Genes Dev 27:1718–1730

    PubMed Central  CAS  PubMed  Google Scholar 

  • Velasco-Miguel S, Buckbinder L, Jean P, Gelbert L, Talbott R, Laidlaw J et al (1999) PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene 18:127–137

    CAS  PubMed  Google Scholar 

  • Venot C, Maratrat M, Dureuil C, Conseiller E, Bracco L, Debussche L (1998) The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO J 17:4668–4679

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2(8):594–604. doi:10.1038/nrc864

    CAS  PubMed  Google Scholar 

  • Walker KK, Levine AJ (1996) Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci U S A 93:15335–15340

    PubMed Central  CAS  PubMed  Google Scholar 

  • Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270

    CAS  PubMed  Google Scholar 

  • Xu Y (2008) Induction of genetic instability by gain-of-function p53 cancer mutants. Oncogene 27:3501–3507

    CAS  PubMed  Google Scholar 

  • Yang A, McKeon F (2000) P63 and P73: P53 mimics, menaces and more. Nat Rev Mol Cell Biol 1(3):199–207. doi:10.1038/35043127

    CAS  PubMed  Google Scholar 

  • Yang A, Kaghad M, Caput D, McKeon F (2002) On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet 18:90–95

    PubMed  Google Scholar 

  • Young J, Simms LA, Biden KG, Wynter C, Whitehall V, Karamatic R et al (2001) Features of colorectal cancers with high-level microsatellite instability occurring in familial and sporadic settings: parallel pathways of tumorigenesis. Am J Pathol 159:2107–2116

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zaika A, Marchenko N, Moll UM (1999) Cytoplasmically “sequestered” wild type p53 protein is resistant to Mdm2-mediated degradation. J Biol Chem 274:27474–27480

    CAS  PubMed  Google Scholar 

  • Zalcenstein A, Stambolsky P, Weisz L, Muller M, Wallach D, Goncharov TM et al (2003) Mutant p53 gain of function: repression of CD95(Fas/APO-1) gene expression by tumor-associated p53 mutants. Oncogene 22:5667–5676

    CAS  PubMed  Google Scholar 

  • Zhao L, Zhao X, Wu X, Tang W (2013) Association of p53 Arg72Pro polymorphism with esophageal cancer: a meta-analysis based on 14 case-control studies. Genet Test Mol Biomarkers 17:721–726

    CAS  PubMed  Google Scholar 

  • Zhou X, Gu Y, Zhang SL (2012) Association between p53 codon 72 polymorphism and cervical cancer risk among Asians: a HuGE review and meta-analysis. Asian Pac J Cancer Prev 13:4909–4914

    PubMed  Google Scholar 

  • Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC (2001) HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3:973–982

    CAS  PubMed  Google Scholar 

  • Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1(5):a001883. doi:10.1101/cshperspect.a001883

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvin Mehdipour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mehdipour, P., Karami, F. (2015). Sentinel Gene Within Cell Territory and Molecular Platforms in Cancer: Methylation Diversity of p53 Gene in Brain Tumors. In: Mehdipour, P. (eds) Epigenetics Territory and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9639-2_8

Download citation

Publish with us

Policies and ethics