Skip to main content

Molecular and Biological Aspects of Microcephalin Gene: Directions in Brain Tumor and Methylation

  • Chapter
  • First Online:
Epigenetics Territory and Cancer
  • 1278 Accesses

Abstract

Microcephalin gene (MCPH1) is located on chromosome 8p23.1 and initially was found to be involved in the pathogenesis of microcephaly. Its interaction with major cellular proteins especially cell cycle checkpoint molecules and DNA repair proteins demonstrated that it plays crucial roles in response to DNA damage and repair. In addition, some alterations have been detected in MCPH1 gene which led to name it as a new tumor suppressor gene. On the top, promoter methylation of MCPH1 gene and its direct effect on its protein expression has been proposed as a main mechanism of MCPH1 gene inactivation in various cancers especially brain tumors. Moreover, there are some reports that relying on the effect of MCPH1 gene mutations in development of non-cancerous diseases including neurocognitive disorders. In this chapter, at first the basics of MCPH1 gene and its protein will be described and then we will provide a brief literature of the investigations carried out on the role of MCPH1 gene alterations in various types of cancer and some other diseases. Moreover, the methylation data of our very recent research together with protein expression in brain tumors are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AD::

Alzheimer disease

APC::

Anaphase promoting complex

ASD::

Autism spectrum disorders

ASPM::

Abnormal spindle microcephaly

ATM::

Ataxia telangiectasia mutated

ATR::

ATM and Rad3-related

BC::

Breast cancer

BIRT1::

BRCT—repeat inhibitor of human telomerase reverse transcriptase expression 1

BMI::

Body mass index

BRCT::

BRCA1 carboxyl-terminal

CDK5RAP2::

Cyclin-dependent kinase5 regulatory subunit associated protein 2

CENPJ::

Centromere protein J

CML::

Chronic myeloid leukemia

COBRA::

Combined bisulfite restriction analysis

DSB::

Double strand DNA break

EOC::

Epithelial ovarian cancer

GBM::

Gleioblastoma multiform

HCC::

Hepatocellular carcinoma

IF::

Immunofluorescence

LOH::

Loss of heterozygosity

MCPH1::

Microcephalin

MMR::

Mismatch repair

MR::

Mental retardation

MSI::

Microsatellite instability

MSP::

Methylation specific PCR

MSRA::

Methylation specific restriction analysis

NPCs::

Neural progenitor cells

NSCLC::

Non-small cell lung cancer

PCC::

Premature chromosome condensation

p53BP::

p53 binding protein

Q-FISH::

Quantitative—fluorescent in situ hybridization

OR::

Odds ratio

OSCC::

Oral squamous cell carcinoma

SNPs::

Single nucleotide polymorphisms

SSCP::

Single strand conformation polymorphism

References

  • Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–2196

    Article  CAS  PubMed  Google Scholar 

  • Alderton GK, Galbiati L, Griffith E, Surinya KH, Neitzel H, Jackson AP et al (2006) Regulation of mitotic entry by microcephalin and its overlap with ATR signalling. Nat Cell Biol 8:725–733

    Article  CAS  PubMed  Google Scholar 

  • Brand S, Rakic P (1979) Genesis of the primate neostriatum: [3H] thymidine autoradiographic analysis of the time of neuron origin in the rhesus monkey. Neuroscience 4:767–778

    Article  CAS  PubMed  Google Scholar 

  • Bruning-Richardson A, Bond J, Alsiary R, Richardson J, Cairns DA, McCormack L et al (2011) ASPM and microcephalin expression in epithelial ovarian cancer correlates with tumour grade and survival. Br J Cancer 104:1602–1610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chan KL, Lee JM, Guan XY, Fan ST, Ng IO (2002) High-density allelotyping of chromosome 8p in hepatocellular carcinoma and clinicopathologic correlation. Cancer 94:3179–3185

    Article  CAS  PubMed  Google Scholar 

  • Couch FJ, Wang X, Bamlet WR, de Andrade M, Petersen GM, McWilliams RR (2010) Association of mitotic regulation pathway polymorphisms with pancreatic cancer risk and outcome. Cancer Epidemiol Biomarkers Prev 19:251–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dobson-Stone C, Gatt JM, Kuan SA, Grieve SM, Gordon E, Williams LM et al (2007) Investigation of MCPH1 G37995C and ASPM A44871G polymorphisms and brain size in a healthy cohort. Neuroimage 37:394–400

    Article  CAS  PubMed  Google Scholar 

  • Doe CQ, Bowerman B (2001) Asymmetric cell division: fly neuroblast meets worm zygote. Curr Opin Cell Biol 13:68–75

    Article  CAS  PubMed  Google Scholar 

  • Erten-Lyons D, Wilmot B, Anur P, McWeeney S, Westaway SK, Silbert L et al (2011) Microcephaly genes and risk of late-onset Alzheimer disease. Alzheimer Dis Assoc Disord 25:276–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Evans PD, Anderson JR, Vallender EJ, Choi SS, Lahn BT (2004) Reconstructing the evolutionary history of microcephalin, a gene controlling human brain size. Hum Mol Genet 13:1139–1145

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Campelo MT, Benlloch S, Sanchez JJ, Costa C, Capitan AG, Bertran-Alamillo J et al (2012) MCPH1 (BRIT1) and outcome to erlotinib in non-small cell lung cancer (NSCLC) patients (p) harboring EGFR mutations. J Clin Oncol 30:e18131

    Google Scholar 

  • Gavvovidis I, Pohlmann C, Marchal JA, Stumm M, Yamashita D, Hirano T et al (2010) MCPH1 patient cells exhibit delayed release from DNA damage-induced G2/M checkpoint arrest. Cell Cycle 9:4893–4899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gerdin AK (2010) The Sanger Mouse genetics programme: high throughput characterisation of knockout mice. Acta Ophthalmol 88:0–0. doi:10.1111/j.1755-3768.2010.4142.x

    Article  Google Scholar 

  • Giallongo C, Tibullo D, La Cava P, Branca A, Parrinello N, Spina P et al (2011) BRIT1/MCPH1 expression in chronic myeloid leukemia and its regulation of the G2/M checkpoint. Acta Haematol 126:205–210

    Article  CAS  PubMed  Google Scholar 

  • Hagemann C, Anacker J, Gerngras S, Kuhnel S, Said HM, Patel R et al (2008) Expression analysis of the autosomal recessive primary microcephaly genes MCPH1 (microcephalin) and MCPH5 (ASPM, abnormal spindle-like, microcephaly associated) in human malignant gliomas. Oncol Rep 20:301–308

    CAS  PubMed  Google Scholar 

  • Jackson A, Eastwood H, Bell SM, Adu J, Toomes C, Carr IM et al (2002) Identification of microcephalin, a protein implicated in determining the size of the human brain. Am J Hum Genet 71:136–142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jo YH, Kim HO, Lee J, Lee SS, Cho CH, Kang IS et al (2013) MCPH1 protein expression and polymorphisms are associated with risk of breast cancer. Gene 517:184–190

    Article  CAS  PubMed  Google Scholar 

  • Karami F, Javan F, Mehrazin M, Mehdipour P (2014) Key role of promoter methylation in inactivation of MCPH1 in brain tumors. J Neuro Res (under publication)

    Google Scholar 

  • Kheirollahi M, Mehrazin M, Kamalian N, Mehdipour P (2010) Alterations of telomere length in human brain tumors. Med Oncol 28:864–870

    Article  PubMed  Google Scholar 

  • Leung JW, Leitch A, Wood JL, Shaw-Smith C, Metcalfe K, Bicknell LS et al (2011) SET nuclear oncogene associates with microcephalin/MCPH1 and regulates chromosome condensation. J Biol Chem 286:21393–21400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li HR, Shagisultanova EI, Yamashita K, Piao Z, Perucho M, Malkhosyan SR (2004) Hypersensitivity of tumor cell lines with microsatellite instability to DNA double strand break producing chemotherapeutic agent bleomycin. Cancer Res 64:4760–4767

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Gao H, Lin SY, Peng G, Huang X, Zhang P et al (2010) BRIT1/MCPH1 is essential for mitotic and meiotic recombination DNA repair and maintaining genomic stability in mice. PLoS Genet 6:e1000826

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin SY, Elledge SJ (2003) Multiple tumor suppressor pathways negatively regulate telomerase. Cell 113:881–889

    Article  CAS  PubMed  Google Scholar 

  • Lin SY, Rai R, Li K, Xu ZX, Elledge SJ (2005) BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1-Chk1 pathway, implicating checkpoint dysfunction in microcephaly. Proc Natl Acad Sci U S A 102:15105–15109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin SY, Liang Y, Li K (2010) Multiple roles of BRIT1/MCPH1 in DNA damage response, DNA repair, and cancer suppression. Yonsei Med J 51:295–301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu T, Hano H (2007) Identification of minimal regions of deletion at 8p23.1-22 associated with metastasis of hepatocellular carcinoma. Liver Int 27:782–790

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Hano H, Meng C, Nagatsuma K, Chiba S, Ikegami M (2007) Frequent loss of heterozygosity in two distinct regions, 8p23.1 and 8p22, in hepatocellular carcinoma. World J Gastroenterol 13:1090–1097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maghirang-Rodriguez R, Archie JG, Schwartz CE, Collins JS (2009) The c.940G variant of the Microcephalin (MCPH1) gene is not associated with microcephaly or mental retardation. Am J Med Genet A 149A:622–625

    Article  CAS  PubMed  Google Scholar 

  • Manke I, Lowery DM, Nguyen A, Yaffe MB (2003) BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302:636–639

    Article  CAS  PubMed  Google Scholar 

  • Margolis SS, Kornbluth S (2004) When the checkpoints have gone: insights into Cdc25 functional activation. Cell Cycle 3:425–428

    Article  CAS  PubMed  Google Scholar 

  • Mehdipour P, Kheirollahi M, Mehrazin M, Kamalian N, Atri M (2011) Evolutionary hypothesis of telomere length in primary breast cancer and brain tumour patients: a tracer for genomic-tumour heterogeneity and instability. Cell Biol Int 35:915–925

    Article  PubMed  Google Scholar 

  • Mekel-Bobrov NPD, Gilbert SL, Lind P, Gosso MF, Luciano M, Harris SE et al (2007) The ongoing adaptive evolution of ASPM and Microcephalin is not explained by increased intelligence. Hum Mol Genet 16:600–608

    Article  CAS  PubMed  Google Scholar 

  • O’Driscoll M, Jeggo PA (2006) The role of double-strand break repair-insights from human genetics. Nat Rev Genet 7:45–54

    Article  PubMed  Google Scholar 

  • Olson JE, Wang X, Pankratz VS, Fredericksen ZS, Vachon CM, Vierkant RA et al (2011) Centrosome-related genes, genetic variation, and risk of breast cancer. Breast Cancer Res Treat 125:221–228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ozgen HM, van Daalen E, Bolton PF, Maloney VK, Huang S, Cresswell L et al (2009) Copy number changes of the microcephalin 1 gene (MCPH1) in patients with autism spectrum disorders. Clin Genet 76:348–356

    Article  CAS  PubMed  Google Scholar 

  • Rai R, Dai H, Multani AS, Li K, Chin K, Gray J et al (2006) BRIT1 regulates early DNA damage response, chromosomal integrity, and cancer. Cancer Cell 10:145–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rimol LMAI, Djurovic S, Brown AA, Roddey JC, Kähler AK, Mattingsdal M et al (2010) Sex-dependent association of common variants of microcephaly genes with brain structure. Proc Natl Acad Sci U S A 107:384–388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez R, Hansen LT, Phear G, Scorah J, Spang-Thomsen M, Cox A et al (2008) Thymidine selectively enhances growth suppressive effects of camptothecin/irinotecan in MSI+ cells and tumors containing a mutation of MRE11. Clin Cancer Res 14:5476–5483

    Article  CAS  PubMed  Google Scholar 

  • Rushton JP, Vernon PA, Bons TA (2007) No evidence that polymorphisms of brain regulator genes Microcephalin and ASPM are associated with general mental ability, head circumference or altruism. Biol Lett 3:157–160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi L, Li M, Su B (2012) MCPH1/BRIT1 represses transcription of the human telomerase reverse transcriptase gene. Gene 495:1–9

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Wiltshire TD, Thompson JR, Mer G, Couch FJ (2012) Molecular basis for the association of microcephalin (MCPH1) protein with the cell division cycle protein 27 (Cdc27) subunit of the anaphase-promoting complex. J Biol Chem 287:2854–2862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tibelius A, Marhold J, Zentgraf H, Heilig CE, Neitzel H, Ducommun B et al (2009) Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1. J Cell Biol 185:1149–1157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trimborn M, Ghani M, Walther DJ, Dopatka M, Dutrannoy V, Busche A et al (2010) Establishment of a mouse model with misregulated chromosome condensation due to defective Mcph1 function. PLoS ONE 5:e9242

    Article  PubMed Central  PubMed  Google Scholar 

  • Urist M, Tanaka T, Poyurovsky MV, Prives C (2004) p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev 18:3041–3054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Venkatesh T, Nagashri MN, Swamy SS, Mohiyuddin SM, Gopinath KS, Kumar A (2013) Primary microcephaly gene MCPH1 shows signatures of tumor suppressors and is regulated by miR-27a in oral squamous cell carcinoma. PLoS ONE 8:e54643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woods RP, Freimer NB, De Young JA, Fears SC, Sicotte NL, Service SK et al (2006) Normal variants of Microcephalin and ASPM do not account for brain size variability. Hum Mol Genet 15:2025–2029

    Article  CAS  PubMed  Google Scholar 

  • Wood JL, Singh N, Mer G, Chen J (2007) MCPH1 functions in an H2AX-dependent but MDC1-independent pathway in response to DNA damage. J Biol Chem 282:35416–35423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu X, Mondal G, Wang X, Wu J, Yang L, Pankratz VS et al (2009) Microcephalin regulates BRCA2 and Rad51-associated DNA double-strand break repair. Cancer Res 69:5531–5536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu X, Lee J, Stern DF (2004) Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1. J Biol Chem 279:34091–34094

    Article  CAS  PubMed  Google Scholar 

  • Yamashita YM, Jones DL, Fuller MT (2003) Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301:1547–1550

    Article  CAS  PubMed  Google Scholar 

  • Yang SZ, Lin FT, Lin WC (2008) MCPH1/BRIT1 cooperates with E2F1 in the activation of checkpoint, DNA repair and apoptosis. EMBO Rep 9:907–915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu X, Chini CC, He M, Mer G, Chen J (2003) The BRCT domain is a phospho-protein binding domain. Science 302:639–642

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvin Mehdipour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Karami, F., Mehdipour, P. (2015). Molecular and Biological Aspects of Microcephalin Gene: Directions in Brain Tumor and Methylation. In: Mehdipour, P. (eds) Epigenetics Territory and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9639-2_7

Download citation

Publish with us

Policies and ethics