Skip to main content

Description of the Dynamics of Charged Particles in Electric Fields: An Approach Using Fractional Calculus

  • Chapter
  • First Online:
Advanced Lasers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 193))

Abstract

The Free Electron Lasers (FEL) uses a beam of electrons accelerated to relativistic velocities as the active medium to laser generation; these electrons are bound to atoms, but move freely in a magnetic field. The efficiency of FEL depends on several parameters such as relaxation time, longitudinal effects and transverse variations of the optical field. Moreover, the electron dynamics in a magnetic field undulator serves as a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either a gain or loss energy from or to the field; this depends on the position of the particle regarding the phase of the external radiation field. On the other hand, optical tweezers are noninvasive tools that use a laser beam to generate powerful forces enough to manipulate microscopic matter by using electric and magnetic fields. In this work, we described the fractional dynamics of charged particles in electric fields to knowtheir displacement. Fractional Newton’s second law is considered and the order of the fractional differential equation is 0 < ɣ ≤ 1. We use the Laplace transform of the fractional derivative in Caputo sense. Dissipative effects are observed in the study cases of the particle dynamics due to the order of the derivative, and the standard electrodynamics is recovered by taking the limit when ɣ = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brau, C.A.: Free-electron lasers. Science. 239, 1115–1121 (1988)

    Article  ADS  Google Scholar 

  2. Freund, H.P., Antonsen, T.M.: Principles of Free-Electron Lasers, 2nd edn. Chapman & Hall, London (1996)

    Google Scholar 

  3. Tsakiris, G.D., Eidmann, K., Meyer-ter-Vehn, J., Krausz, F.: Route to intense single attosecond pulses. New J. Phys. 8(19) (2006)

    Google Scholar 

  4. Colson, W.B. Electron dynamics in free electron laser resonator modes. Appl. Phys. B. 29 101–109 (1982)

    Article  ADS  Google Scholar 

  5. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, NewYork (1974)

    Google Scholar 

  6. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach Science Publishers, Langhorne (1993)

    MATH  Google Scholar 

  7. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  8. Baleanu, D.: Fractional Calculus Models and Numerical Methods. World Scientific, Singapore (2012)

    Google Scholar 

  9. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-order systems and controls, series: advances in Industrial control. Springer (2010)

    Google Scholar 

  10. Caponetto, R., Dongola, G., Fortuna, L., Petrás, I.: Fractional Order Systems: Modeling and Control Applications. World Scientific, Singapore (2010)

    Google Scholar 

  11. Baleanu, D., Günvenc, Z.B., Tenreiro, M.J.A. (eds.): New Trends in Nanotechnology and Fractional Calculus Applications. Springer (2010)

    Google Scholar 

  12. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)

    Google Scholar 

  13. Baleanu, D., Golmankhaneh, A.K., Golmankhaneh, A.K., Nigmatullin, R.R.: Newtonian law with memory. Nonlinear Dyn. 60(1–2), 81–86 (Springer) (2010)

    Article  MATH  Google Scholar 

  14. Guía, M., Gómez, F., Rosales, J.: Analysis on the time and frequency domain for the RC electric circuit of fractional order. Cent. Eur. J. Phys. 11(10), 1366–1371 (2013) (Springer)

    Google Scholar 

  15. Hilfer, R.: Fractional diffusion based on Riemann-Liouville fractional derivatives. J. Phys. Chem. 104, 3914–3917 (2000)

    Article  Google Scholar 

  16. Gómez, F., Rosales, J., Guía, M.: RLC electrical circuit of non-integer order. Cent. Eur. J. Phys. 11(10), 1361–1365 (2013) (Springer)

    Google Scholar 

  17. Metzler, R., Klafter, J.: The Restaurant at the end of random walk: recent development in description of anomalous transport by fractional dynamics. J. Phys. A37, R161–R208 (2004)

    MathSciNet  ADS  Google Scholar 

  18. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. In: Duarte, M., Tenreiro-Machado, J.A., (eds.) Special issue of fractional order derivatives and their applications. Nonlinear Dyn. 38(1–2), 323–337. Berlin: Springer-Verlag (2004)

    Google Scholar 

  19. Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  20. West, B.J., Bologna, M., Grigolini, P.: Physics of Fractional Operators. Springer, Berlin (2003)

    Book  Google Scholar 

  21. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Roddin (2006)

    Google Scholar 

  22. Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91, 134–147. (1971)

    Article  ADS  Google Scholar 

  23. Gómez, F., Bernal, J., Rosales, J., Córdova, T.: Modeling and simulation of equivalent circuits in description of biological systems—a fractional calculus approach. J. Electr. Bioimpedance. 3, 2–11 (2012)

    Google Scholar 

  24. Riewe, F.: Nonconservative lagrangian and hamiltonian mechanics. Phys. Rev E. 53, 1890–1899 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  25. Herzallah, M.A.E., Muslih, S.I., Baleanu, D., Rabei, E.M.: Hamilton-Jacobi and fractional like action with time scaling. Nonlinear Dyn. 66(4), 549–555 (Springer) (2011)

    Article  MathSciNet  Google Scholar 

  26. Golmankhaneh, A.K., Yengejeh, A.M., Baleanu, D.: On the fractional Hamilton and Lagrange mechanics. Int. J. Theor Phys. 51(9) 2909–2916 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Golmankhaneh, A.K.: Investigations in Dynamics: With Focus on Fractional Dynamics. LAP (Lambert Academic publishing), Saarbrucken (2012)

    MATH  Google Scholar 

  28. Muslih, S.I., Saddallah, M., Baleanu, D., Rabei, E.: Lagrangian formulation of Maxwell’s field in fractional D dimensional space-time. Romanian J. Phys. 55(7–8) 659–663 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Baleanu, D., Muslih, S.I., Rabei, E.M.: On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dyn. 53(1–2) 67–74 Springer (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Uchaikin, V.: Fractional calculus. Edit. Artishok. In Russian, (2008).

    Google Scholar 

  31. Preda, L., Mihailescu, M., Preda, A.: U. P. B. Sci. Bull. Series 71(4) 11–20 (2009)

    Google Scholar 

  32. Kkulish, V.V., Llage, J.L., Komarov, P.L., Raad, P.E.: A fractional-diffusion theory for calculating thermal properties of thin films from surface transient thermoreflectance measurements. J. heat Transf. 123(6).1133–1138 (2001)

    Article  Google Scholar 

  33. Muniandy, S.V., Chew, W.X., Wong C.S.: Fractional dynamics in the light scattering intensity fluctuation in dusty plasma. Phys. Plasmas. 18(1), 013701-1,013701-8 (2011)

    Google Scholar 

  34. Metzler, R., Klafter, J.: J. Phys. A: Math. Gen. 37R161, (2004).

    Google Scholar 

  35. Schumer, R., Benson, D.A., Meerschaert, M.M., Wheatcraft, S.W.: Eulerian derivation of the fractional advection-dispersion equation. J. Contam. Hydrol. 48(1–2), 69–88 (2001)

    Google Scholar 

  36. Berkowitz, B., Klafter, J., Metzler, R., Scher, H.: Water Resour. Res. 38, 1191 (2002)

    Article  ADS  MATH  Google Scholar 

  37. Granek, R., Klafter, J.: Anomalous motion of membranes under a localized external potential. Europhys. Lett. 56, 15 (2001)

    Article  ADS  Google Scholar 

  38. Gómez-Aguilar, J.F., Rosales-García, J.J., Bernal-Alvarado, J.J., Córdova-Fraga, T.: Fractional mechanical oscillators. Rev. Mex. Fís. 58, 348–352 (2012)

    Google Scholar 

  39. Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970)

    Google Scholar 

Download references

Acknowledgments

This research was supported by CONACYT and Universidad de Guanajuato “Apoyo a la Investigación 2013”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gómez-Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gómez-Aguilar, F., Alvarado-Méndez, E. (2015). Description of the Dynamics of Charged Particles in Electric Fields: An Approach Using Fractional Calculus. In: Shulika, O., Sukhoivanov, I. (eds) Advanced Lasers. Springer Series in Optical Sciences, vol 193. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9481-7_9

Download citation

Publish with us

Policies and ethics