Skip to main content

Robotic Assistance for Cerebellar Reaching

  • Chapter
  • First Online:
Neuro-Robotics

Part of the book series: Trends in Augmentation of Human Performance ((TAHP,volume 2))

Abstract

Robotic instruments allow precise measurements and interventions to understand and treat human motor deficits. These same tools may be used to design model-based and patient-specific robotic assistance and rehabilitation paradigms. This approach could lead to an increased understanding of the brain and improved patient outcomes. We illustrate this paradigm with two studies in which generic and patient-specific models are used to provide reaching assistance with a robotic exoskeleton, the KINARM. These studies involve patients with cerebellar ataxia who make reaching movements that are irregularly curved, over- or undershoot targets, and are more variable than those of healthy people. Two assistive methods are explored. In the first, a patient-specific change in arm dynamics predicted to assist each patient is utilized. The results suggest this approach may improve the reaching of some cerebellar patients and not for others. The second method employs force channels, which improved reaching movements for all patients. However, neither method showed evidence of motor learning; i.e. there was no maintenance of improved movement after the assistive forces were removed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams R, Victor M (1993) The cerebellum. Principles of neurology. McGraw-Hill, OH

    Google Scholar 

  2. Aisen M, Krebs H, Hogan N, McDowell F, Volpe B (1997) The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol 54(4):443–446

    Article  CAS  PubMed  Google Scholar 

  3. Ataxia (2013) The mayo clinic. http://www.mayoclinic.com/health/ataxia/DS00910. Accessed 13 May 2013

  4. Ataxias: General Classification (2013) Neuromuscular. neuromuscular.wustl.edu/ataxia/aindex.html. Accessed 13 May 2013

    Google Scholar 

  5. Bastian A, Martin T, Keating J, Thach W (1996) Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophys 76:492–509

    CAS  Google Scholar 

  6. Bastian A, Zackowki K, Thach W (2000) Cerebellar ataxia: torque deficiency or torque mismatch between joints? J Neurophysiol 83(5):3019–3030

    CAS  PubMed  Google Scholar 

  7. Brewer B, Fagan M, Klatzky R, Matsuoka Y (2005) Perceptual limits for a robotic rehabilitation environment using visual feedback distortion. Trans Neural Syst Rehabil Eng 13:1–11

    Google Scholar 

  8. Diedrichsen J, White O, Newman D, Lally N (2010) Use-dependent and error-based learning of motor behaviors. J Neurosci 30(15):5159–5166

    Article  CAS  PubMed  Google Scholar 

  9. Dolan J, Friedman M, Nagurka M (1993) Dynamic and loaded impedance components in the maintenance of human arm posture. IEEE Trans Syst Man Cybern Syst 23(3):698–709

    Article  Google Scholar 

  10. Earhart G, Fletcher W, Horak F, Block E, Weber K, Suchowersky O, Melvill J (2002) Does the cerebellum play a role in podokinetic adaptation? Exp Brain Res 146(4):538–542

    Article  PubMed  Google Scholar 

  11. Emken J, Reinkensmeyer D (2005) Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. Trans Neural Sys Rehabil Eng 13(1):33–39

    Article  Google Scholar 

  12. Fasoli S, Fragala-Pinkham M, Hughes R, Hogan N, Krebs H, Stein J (2008) Upper limb robotic therapy for children with hemiplegia. Am J Phys Med Rehabil 87:929–936

    Article  PubMed  Google Scholar 

  13. Ghez C, Thach W (2000) The cerebellum. In: Kandel E, Schwartz J, Jessell J (eds) Principles of neural science. McGraw-Hill, New York

    Google Scholar 

  14. Gomi H, Kawato M (1997) Human arm stiffness and equilibrium-point trajectory during multi-joint movement. Biol Cybern 76(3):163–171

    Article  CAS  PubMed  Google Scholar 

  15. Grow D (2011) Robot-assisted modeling and rehabilitation strategies for cerebellar Ataxia. Dissertation, Johns Hopkins University

    Google Scholar 

  16. Hollerbach J, Khalil W, Gautier M (2008) Model identification. In: Sciliano B, Khatib O (eds) Springer handbook of robotics. Springer, New York, pp 321–342

    Chapter  Google Scholar 

  17. Krebs H, Volpe B, Aisen M, Hogan N (2000) Increasing productivity and quality of care: robot-aided neuro-rehabilitation. J Rehabil Res Dev 37(6):639–652

    CAS  PubMed  Google Scholar 

  18. Lum P, Burgar C, Shor P, Majmundar M, Van der Loos M (2002) Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 83(7):952–959

    Article  PubMed  Google Scholar 

  19. Martin T, Keating J, Goodkin H, Bastian A, Thach W (1996) Throwing while looking through prisms: I. Focal olivocerebellar lesions impair adaptation. Brain 119:1183–1198

    Google Scholar 

  20. Maschke M, Gomez C, Ebner T, Konczak J (2004) Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophys 91(1):230–238

    Article  Google Scholar 

  21. Massaquoi S, Hallett M (1996) Kinematics of initiating a two-joint arm movement in patients with cerebellar ataxia. Can J Neuro Sci 23(1):3–14

    CAS  Google Scholar 

  22. Miall R, Weir D, Wolpert D, Stein J (1993) Is the cerebellum a Smith predictor? J Motor Behav 25:203–216

    Article  CAS  Google Scholar 

  23. Mobasser F, Hashtrudi-Zaad K (2006) A method for online estimation of human arm dynamics. Paper presented at the 28th EMBS, New York, 31 Aug–3 Sept 2006

    Google Scholar 

  24. Morton S, Bastian A (2006) Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 26(36):9107–9116

    Article  CAS  PubMed  Google Scholar 

  25. Patton J, Stoykov M, Kovic M, Mussa-Ivaldi F (2006) Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 168(3):368–383

    Article  PubMed  Google Scholar 

  26. Pigeon P, Bortolami S, DiZio P, Lackner J (2003) Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques. J Neurophys 89(1):276–289

    Google Scholar 

  27. Scheidt R, Stoeckmann T (2007) Reach adaptation and final position control amid environmental uncertainty after stroke. J Neurophys 97(4):2824–2836

    Article  Google Scholar 

  28. Schweighofer N, Arbib M, Kawato M (1998) Role of the cerebellum in reaching movements in humans: I. Distributed inverse dynamics control. Eur J Neurosci 10(1):86–94

    CAS  Google Scholar 

  29. Scott S (1999) Apparatus for measuring and perturbing shoulder and elbow joint positions and torques during reaching. J Neurosci Methods 89:119–127

    Article  CAS  PubMed  Google Scholar 

  30. Smith E (2004) Robotic compensation of cerebellar ataxia. Thesis, Massachusetts Institute of Technology

    Google Scholar 

  31. Smith M, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophys 93(5):2809–2821

    Article  Google Scholar 

  32. Stein J, Krebs H, Frontera W, Fasoli S, Hughes R, Hogan N (2004) Comparison of two techniques of robot-aided upper limb exercise training after stroke. Am J Phys Med Rehabil 83(9):720–728

    Article  PubMed  Google Scholar 

  33. Topka H, Konczak J, Schneider K, Boose A, Dichgans J (1998) Multi-joint arm movements in cerebellar ataxia: abnormal control of movement dynamics. Exp Brain Res 119(4):493–503

    Article  CAS  PubMed  Google Scholar 

  34. Trouillas P et al (1997) International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. J Neuro Sci 145(2):205–211

    Article  CAS  Google Scholar 

  35. Van der Loos H (1995) VA/Stanford rehabilitation robotics research and development program: lessons learned in the application of robotics technology to the field of rehabilitation. IEEE Trans Rehabil Eng 3(1):46–55

    Article  Google Scholar 

  36. Westlake K, Patten C (2009) Pilot study of lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J Neuroeng Rehabil 6(1):8–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David I. Grow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grow, D.I., Bastian, A.J., Okamura, A.M. (2014). Robotic Assistance for Cerebellar Reaching. In: Artemiadis, P. (eds) Neuro-Robotics. Trends in Augmentation of Human Performance, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8932-5_12

Download citation

Publish with us

Policies and ethics