Skip to main content

Enhancing Recovery of Sensorimotor Functions: The Role of Robot Generated Haptic Feedback in the Re-learning Process

  • Chapter
  • First Online:
Neuro-Robotics

Abstract

The term Robotic Rehabilitation defines a class of machines employed for different scenarios, ranging from therapeutic and assistive applications to robots devoted to neuroscience, behavioral research, and cognitive aspects. The first use of such technology dates back to early 1990s, with a relatively long history and it remains linked to the idea that robots, even with a certain degree of autonomy, must be directly controlled by humans while the interaction must be opportunely regulated in order to promote motor recovery or independent living. These devices are designed for individuals with neuromotor and cognitive disabilities to provide rehabilitative exercises or assistance for activity of daily living. They are also measurement systems i.e. they can incorporate sensors for monitoring kinematic and kinetic interaction with subjects such as movement, force or inertial sensors, or for detecting EMG signals to trigger the assistance or to provide – in more complex architectures – Functional Electric Stimulation (FES) to promote motor activity. In this chapter we will focus on therapeutic robots, which are usually employed to perform rehabilitation protocol, describing in details the most widely used control architectures, the implementation of rehabilitation exercises to restore specific motor functions and the measures of the corresponding performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hogan N, Krebs HI, Sharon A, Charnnarong J (1995) Interactive robotic therapist. US Patent 5,466,213

    Google Scholar 

  2. Burgar CG, Lum PS, Shor PC, van der Loos HFM (2000) Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J Rehabil Res Dev 37(6):663–673

    CAS  PubMed  Google Scholar 

  3. Reinkensmeyer DJ, Takahashi CD, Timoszyk WK, Reinkensmeyer AN, Kahn LE (2000) Design of robot assistance for arm movement therapy following stroke. Adv Robot 14(7):625–637

    Article  Google Scholar 

  4. Sukal TM, Ellis MD, Dewald JP (2007) Shoulder abduction-induced reductions in reaching work area following hemiparetic stroke: neuroscientific implications. Exp Brain Res 183:215–223

    Article  PubMed Central  PubMed  Google Scholar 

  5. Loureiro R, Amirabdollahian F, Topping M, Driessen B, Harwin WS (2003) Upper limb robot mediated stroke therapy – Gentle/s approach. Auton Robot 15(1):35–51

    Article  Google Scholar 

  6. Herder JL, Vrijlandt N, Antonides T, Cloosterman M, Mastenbroek PL (2006) Principle and design of a mobile arm support for people with muscular weakness. J Rehabil Res Dev 43(5):591–604

    Article  PubMed  Google Scholar 

  7. Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T, Cramer SC, Bobrow JE, Reinkensmeyer DJ (2006) Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng 14(3):378–389

    Article  PubMed  Google Scholar 

  8. Nef T, Mihelj M, Riener R (2007) ARMin: a robot for patient-cooperative arm therapy. Med Biol Eng Comput 45(9):887–900

    Article  PubMed  Google Scholar 

  9. Stienen AHA, Hekman EEG, Helm FCT, Prange GB, Jannink MJA, Aalsma AMM, Kooij H (2007) Dampace: dynamic force-coordination trainer for the upper extremities. In: IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007, pp 820–826

    Google Scholar 

  10. Frisoli A, F Rocchi F, Marcheschi S, Dettori A, Salsedo F, Bergamasco M (2005) A new force-feedback arm exoskeleton for haptic interaction in virtual environments. In: Proceedings of 1st WHC’05, pp 195–201

    Google Scholar 

  11. Carignan C, Tang J, Roderick S (2009) Development of an exoskeleton haptic interface for virtual task training. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, pp 3697–3702

    Google Scholar 

  12. Perry JC, Rosen J, Burns S (2007) Upper-limb powered exoskeleton design. IEEE ASME Trans Mech 12(4):408–417

    Article  Google Scholar 

  13. Lawrence DA (1993) Stability and transparency in bilateral teleoperation. IEEE Trans Robot Automat 9(5):624–637

    Article  Google Scholar 

  14. Colgate JE, Brown JM (1994) Factors affecting the Z-width of a haptic display. Proc IEEE Int Conf Robot Automat 4:3205–3210, 8–13 May 1994

    Google Scholar 

  15. Casadio M, Morasso PG, Sanguineti V, Arrichiello V (2006) Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol Health Care 13:1–20

    Google Scholar 

  16. Gomi H, Kawato M (1997) Human arm stiffness and equilibrium-point trajectory during multi-joint movement. Biol Cybern 76(3):163–171

    Article  CAS  PubMed  Google Scholar 

  17. Howard IS, Ingram JN, Wolpert D (2009) A modular planar robotic manipulandum with end-point torque control. J Neurosci Methods 181(2):199–211

    Article  PubMed  Google Scholar 

  18. Van der Linde RQ, Lammertse P, Frederiksen E, Ruiter B (2002) The HapticMaster, a new high-performance haptic interface. In: Proceedings of the EuroHaptics 2002, Edimbourg, Ecosse, 8–10 July 2002, 5 pp

    Google Scholar 

  19. Lemon RN (2008) Descending pathways in motor control. Annu Rev Neurosci 31:195–218

    Article  CAS  PubMed  Google Scholar 

  20. Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell C, Roger V, Sorlie P, Steinberger J, Thom T, Wilson M, Hong Y, AHA committees (2008) Heart disease and stroke statistics–2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117(4):e25–e146

    Article  PubMed  Google Scholar 

  21. Harris JE, Eng JJ (2007) Paretic upper-limb strength best explains arm activity in people with stroke. Phys Ther 87(1):88–97

    Article  PubMed  Google Scholar 

  22. Pomeroy VM, Dean D, Sykes L, Faragher EB, Yates M, Tyrrell PJ, Moss S, Tallis RC (2000) The unreliability of clinical measures of muscle tone: implications for stroke therapy. Age Ageing 29(3):229–233

    Article  CAS  PubMed  Google Scholar 

  23. Powers RK, Marder-Meyer J, Rymer WZ (1990) Quantitative relations between hypertonia and stretch reflex threshold in spastic hemiparesis. Ann Neurol 23(2):115–124 (1998)

    Article  Google Scholar 

  24. Lance JW (1990) What is spasticity? Lancet 335(8689):606

    Article  CAS  PubMed  Google Scholar 

  25. Dewald JP, Pope PS, Given JD, Buchanan TS, Rymer WZ (1995) Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain 118(2):495–510

    Article  PubMed  Google Scholar 

  26. Dewald JPA, Beer RF (2001) Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve 24(1):273–283

    Article  CAS  PubMed  Google Scholar 

  27. Hafer-Macko CE, Ryan AS, Ivey FM, Macko RF (2008) Skeletal muscle changes after hemiparetic stroke and potential beneficial effects of exercise intervention strategies. J Rehabil Res Dev 45(2):261–272

    Article  PubMed Central  PubMed  Google Scholar 

  28. Mirbagheri MM, Rymer WZ (2008) Time-course of changes in arm impairment after stroke: variables predicting motor recovery over 12 months. Arch Phys Med Rehabil 89(8):1507–1513

    Article  PubMed  Google Scholar 

  29. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S (1975) The post-stroke hemiplegic patient. I. A method for evaluation of physical performance. Scand J Rehabil Med 7(1):13–31

    CAS  PubMed  Google Scholar 

  30. Twitchell TE (1951) The restoration of motor function following hemiplegia in man. Brain 74(4):443–480

    Article  CAS  PubMed  Google Scholar 

  31. Kwakkel G, Kollen BJ, Krebs HI (2008) Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabil Neural Repair 22(2):111–121

    Article  PubMed Central  PubMed  Google Scholar 

  32. Mehrholz J, Wagner K, Meissner D, Grundmann K, Zange C, Koch R, Pohl M (2005) Reliability of the modified Tardieu scale and the modified Ashworth scale in adult patients with severe brain injury: a comparison study. Clin Rehabil 19(7):751–759

    Article  PubMed  Google Scholar 

  33. Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, Dario P, Minuco G (2008) Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Neurorehabil Neural Repair 22(1):50–63

    Article  CAS  PubMed  Google Scholar 

  34. Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Hogan N (2009) Submovement changes characterize generalization of motor recovery after stroke. Cortex 45:318–324

    Article  PubMed  Google Scholar 

  35. Ellis MD, Sukal T, Demott T, Dewald JPA (2008) Augmenting clinical evaluation of hemiparetic arm movement with a laboratory-based quantitative measurement of kinematics as a function of limb loading. Neurorehabil Neural Repair 22(4):321–329

    Article  PubMed Central  PubMed  Google Scholar 

  36. Patton JL, Phillips-Stoykov ME, Stojakovich M, Mussa-Ivaldi FA (2006) Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 168:368–383

    Article  PubMed  Google Scholar 

  37. Flanagan JR, Lolley S (2001) The inertial anisotropy of the arm is accurately predicted during movement planning. J Neurosci 21:1361–1369

    CAS  PubMed  Google Scholar 

  38. Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR et al (2002) Movement smoothness changes during stroke recovery. J Neurosci 22(18):8297–8304

    CAS  PubMed  Google Scholar 

  39. Rohrer B, Fasoli S, Krebs HI, Volpe B, Frontera WR, Stein J et al (2004) Submovements grow larger, fewer, and more blended during stroke recovery. Motor Control 8(4):472–483

    PubMed  Google Scholar 

  40. Rohrer B, Hogan N (2003) Avoiding spurious submovement decompositions: a globally optimal algorithm. Biol Cybern 89(3):190–199

    Article  PubMed  Google Scholar 

  41. Rohrer B, Hogan N (2006) Avoiding spurious submovement decompositions II: a scattershot algorithm. Biol Cybern 94:409–414

    Article  PubMed  Google Scholar 

  42. Malfait N, Shiller DM, Ostry DJ (2002) Transfer of motor learning across arm configurations. J Neurosci 22:9656–9660

    CAS  PubMed  Google Scholar 

  43. Mattar AA, Ostry DJ (2007) Modifiability of generalization in dynamics learning. J Neurophysiol 98:3321–3329

    Article  PubMed  Google Scholar 

  44. Hwang EJ, Donchin O, Smith MA, Shadmehr R (2003) A gain-field encoding of limb position and velocity in the internal model of arm dynamics. PLoS Biol 1(2):E25

    Article  PubMed Central  PubMed  Google Scholar 

  45. Mussa-Ivaldi FA, Hogan N, Bizzi E (1985) Neural, mechanical, and geometric factors subserving arm posture in humans. J Neurosci 5:2732–2743

    CAS  PubMed  Google Scholar 

  46. Shadmehr R, Mussa-Ivaldi FA, Bizzi E (1993) Postural force fields of the human arm and their role in generating multijoint movements. J Neurosci 13:45–62

    CAS  PubMed  Google Scholar 

  47. McIntyre J, Mussa-Ivaldi FA, Bizzi E (1996) The control of stable arm postures in the multi-joint arm. Exp Brain Res 110:62–73

    Article  Google Scholar 

  48. Gomi H, Kawato M (1997) Human arm stiffness and equilibrium point trajectory during multijoint movement. Biol Cybern 76:163–171

    Article  CAS  PubMed  Google Scholar 

  49. Tsuji T, Morasso P, Goto K, Ito K (1995) Human hand impedance characteristics during maintained posture in multi-joint arm movements. Biol Cybern 72:475–485

    Article  CAS  PubMed  Google Scholar 

  50. Lacquaniti F, Carrozzo M, Borghese NA (1993) Time-varying mechanical behavior of multijointed arm in man. J Neurophysiol 69:1443–1464

    CAS  PubMed  Google Scholar 

  51. Dolan JM, Friedman MB, Nagurka ML (1990) A testbed for measurement of human arm impedance parameters. In: Proceedings of the IEEE conference on system engineering, pp 123–126

    Google Scholar 

  52. Dolan JM, Friedman MB, Nagurka ML (1993) Dynamic and loaded impedance components in the maintenance of human arm posture. IEEE Trans Syst Man Cybern 23:698–709

    Article  Google Scholar 

  53. Burdet E, Osu R, Franklin DW, Milner TE, Kawato M (2000) A method for measuring hand stiffness during multi-joint arm movements. J Biomech 33:1705–1709

    Article  CAS  PubMed  Google Scholar 

  54. Piovesan D, Pierobon A et al (2012) Measuring multi-joint stiffness during single movements: numerical validation of a novel time-frequency approach. PLoS One 7(3):e33086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Piovesan D, Morasso P, Giannoni P, Casadio M (2013) Arm stiffness during assisted movement after stroke: the influence of visual feedback and training. In: IEEE transactions on neural systems and rehabilitation engineering, Zurich, Switzerland, 29th June, 1st July

    Google Scholar 

  56. Marchal-Crespo L, Reinkensmeyer DJ (2009) Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil 6:20

    Article  PubMed Central  PubMed  Google Scholar 

  57. Fregly BJ, Boninger ML, Reinkensmeyer DJ (2012) Personalized neuromusculoskeletal modeling to improve treatment of mobility impairments: a perspective from European research sites. J Neuroeng Rehabil 9:18

    Article  PubMed Central  PubMed  Google Scholar 

  58. Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, Dario P, Minuco G (2008) Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Neurorehabil Neural Repair 22:50–63

    Article  CAS  PubMed  Google Scholar 

  59. Colombo R, Sterpi I, Mazzone A, Delconte C, Minuco G, Pisano F (2010) Measuring changes of movement dynamics during robot-aided neurorehabilitation of stroke patients. IEEE Trans Neural Syst Rehabil Eng 18:85

    Article  Google Scholar 

  60. Emken JL, Benitez R, Sideris A, Bobrow JE, Reinkensmeyer DJ (2007) Motor adaptation as a greedy optimization of error and effort. J Neurophysiol 97:3997–4006

    Article  PubMed  Google Scholar 

  61. Casadio M, Sanguineti V (2012) Learning, retention, and slacking: a model of the dynamics of recovery in robot therapy. IEEE Trans Neural Syst Rehabil Eng 20(3):286–296. doi:10.1109/TNSRE.2012.2190827

    Article  PubMed  Google Scholar 

  62. Vergaro E, Casadio M, Squeri V, Giannoni P, Morasso P, Sanguineti V (2010) Self-adaptive robot training of stroke survivors for continuous tracking movements. J Neuroeng Rehabil 7:13

    Article  PubMed Central  PubMed  Google Scholar 

  63. Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE (2008) Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 16:286–297

    Article  PubMed  Google Scholar 

  64. Squeri V, Sterpi I, Basteris A, Casadio M, Pisano F, Colombo R, Sanguineti V (2012) Robot therapy for severely impaired stroke survivors: toward a concurrent regulation of task difficulty and degree of assistance. In: 4th IEEE RAS/EMBS international conference on biomedical robotics and biomechatronics (BioRob2012), pp 1026–1031

    Google Scholar 

  65. Butz M, Van Ooyen A, Worgotter F (2009) A model for cortical rewiring following deafferentation and focal stroke. Front Comput Neurosci 3:10

    Article  PubMed Central  PubMed  Google Scholar 

  66. Goodall S, Reggia JA, Chen Y, Ruppin E, Whitney C (1997) A computational model of acute focal cortical lesions. Stroke 28:101–109

    Article  CAS  PubMed  Google Scholar 

  67. Reinkensmeyer DJ, Iobbi MG, Kahn LE, Kamper DG, Takahashi CD (2003) Modeling reaching impairment after stroke using a population vector model of movement control that incorporates neural firing-rate variability. Neural Comput 15:2619–2642

    Article  PubMed  Google Scholar 

  68. Cheung VC, Turolla A, Agostini M, Silvoni S, Bennis C, Kasi P, Paganoni S, Bonato P, Bizzi E (2012) Muscle synergy patterns as physiological markers of motor cortical damage. Proc Natl Acad Sci U S A 109:14652–14656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Han CE, Arbib MA, Schweighofer N (2008) Stroke rehabilitation reaches a threshold. PLoS Comput Biol 4:e1000133

    Article  PubMed Central  PubMed  Google Scholar 

  70. Reinkensmeyer DJ, Guigon E, Maier MA (2012) A computational model of use-dependent motor recovery following a stroke: optimizing corticospinal activations via reinforcement learning can explain residual capacity and other strength recovery dynamics. Neural Netw 29–30:9

    Google Scholar 

  71. Takiyama K, Okada M (2012) Recovery in stroke rehabilitation through the rotation of preferred directions induced by bimanual movements: a computational study. PLoS One 7:e37594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Krebs HI, Hogan N (2012) Robotic therapy: the tipping point. Am J Phys Med Rehabil 91(11, suppl 3):S290–S297

    Article  PubMed Central  PubMed  Google Scholar 

  73. Mehrholz J, Hädrich A, Platz T, Kugler J, Pohl M (2012) Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev 6:CD006876

    PubMed  Google Scholar 

  74. Morasso P (2012) Towards an integrated approach to multimodal assistance of stroke patients based on the promotion of intentionality. In: Pons JL, Torricelli D, Pajaro M (eds) Converging clinical and engineering research on neurorehabilitation, Biosystems & biorobotics. Springer, Berlin/Heidelberg, pp 23–27

    Google Scholar 

  75. Osu R, Otaka Y, Ushiba J, Sakata S, Yamaguchi T, Fujiwara T, Kondo K, Liu M (2012) A pilot study of contralateral homonymous muscle activity simulated electrical stimulation in chronic hemiplegia. Brain Inj 26:1105–1112

    Article  PubMed  Google Scholar 

  76. Casadio M, Pressman A, Acosta S, Danzinger Z, Fishbach A, Mussa-Ivaldi FA, Muir K, Tseng H, Chen D (2011) Body machine interface: remapping motor skills after spinal cord injury. In: Proceedings of the 12th IEEE international conference on rehabilitation robotics, Zurich, Switzerland, 29th June, 1st July

    Google Scholar 

  77. Takahashi M, Takeda K, Otaka Y, Osu R, Hanakawa T, Gouko M, Ito K (2012) Event related desynchronization-modulated functional electrical stimulation system for stroke rehabilitation: a feasibility study. J Neuroeng Rehabil 9:56

    Article  PubMed Central  PubMed  Google Scholar 

  78. de Kroon JR, Jzerman MJI (2008) Electrical stimulation of the upper extremity in stroke: cyclic versus EMG-triggered stimulation. Clinical Rehabil 22:690–697

    Article  Google Scholar 

  79. Meilink A, Hemmen B, Seelen H, Kwakkel G (2008) Impact of EMG-triggered neuromuscular stimulation of the wrist and finger extensors of the paretic hand after stroke: a systematic review of the literature. Clin Rehabil 22:291–305

    Article  CAS  PubMed  Google Scholar 

  80. van der Wel RPRD, Knoblich G, Sebanz N (2011) Let the force be with us: Dyads exploit haptic coupling for coordination. J Exp Psychol Hum Percept Perform 37(5):1420–1431

    Article  PubMed  Google Scholar 

  81. De Santis D, Masia L, Morasso P, Squeri V, Zenzeri J, Casadio M, Giannoni P, Riva A (2013) Pulsed assistance: a new paradigm of robot training. In: Proceedings of the 13th IEEE international conference on rehabilitation robotics, Zurich, Switzerland, 29th June, 1st July

    Google Scholar 

  82. Smith DL, Akhtar AJ, Garraway WM (1983) Proprioception and spatial neglect after stroke. Age Ageing 12:63–69

    Article  CAS  PubMed  Google Scholar 

  83. de Weerdt W, Lincoln NB, Harrison MA (1987) Prediction of arm and hand function recovery in stroke patients. Int J Rehabil Res 10:110–112

    Article  PubMed  Google Scholar 

  84. Dukelow SP, Herter TM, Moore KD, Demers MJ, Glasgow JI, Bagg SD, Norman KE, Scott SH (2010) Quantitative assessment of limb position sense following stroke. Neurorehabil Neural Repair 24:178–187

    Article  PubMed  Google Scholar 

  85. Squeri V, Zenzeri J, Morasso P, Basteris A (2011) Integrating proprioceptive assessment with proprioceptive training of stroke patients. In: IEEE International Conference on Rehabilitation Robotics (ICORR), Zurich, Switzerland, 29th June, 1st July, pp 1–6

    Google Scholar 

  86. Casadio M, Sanguineti V, Squeri V, Masia L, Morasso P (2010) Inter-limb interference during bimanual adaptation to dynamic environments. Exp Brain Res 202(3):693–707

    Article  PubMed  Google Scholar 

  87. Berlucchi G, Buchtel HA (2009) Neuronal plasticity: historical roots and evolution of meaning. Exp Brain Res 192:307–319

    Article  CAS  PubMed  Google Scholar 

  88. Rosenkranz K, Kacar A, Rothwell JC (2007) Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. J Neurosci 27:12058–12066

    Article  CAS  PubMed  Google Scholar 

  89. Farmer SF, Harrison LM, Ingram DA, Stephens JA (1991) Plasticity of central motor pathways in children with hemiplegic cerebral palsy. Neurology 41:1505

    Article  CAS  PubMed  Google Scholar 

  90. Masia L, Frascarelli F, Morasso P, Di Rosa G, Petrarca M, Castelli E, Cappa P (2011) Reduced short term adaptation to robot generated dynamic environment in children affected by congenital hemiparesis. J Neuroeng Rehabil (JNER) 8:28

    Article  Google Scholar 

  91. Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT (1997) The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol 54:443–446

    Article  CAS  PubMed  Google Scholar 

  92. Casadio M, Giannoni P, Morasso P, Sanguineti V (2009) A proof of concept study for the integration of robot therapy with physiotherapy in the treatment of stroke patient. Clin Rehabil 23:217–228

    Article  PubMed  Google Scholar 

  93. Casadio M, Ranganathan R, Mussa-Ivaldi FA (2012) The body-machine interface: a new perspective on an old theme. J Mot Behav 44:419–433

    Article  PubMed Central  PubMed  Google Scholar 

  94. Casadio M, Pressman A et al (2011) Body machine interface: remapping motor skills after spinal cord injury. In: Proceedings of the 12th IEEE international conference on rehabilitation robotics, Zurich, Switzerland, 29th June, 1st July

    Google Scholar 

  95. Casadio M, Pressman A et al (2010) Functional reorganization of upper-body movement after spinal cord injury. Exp Brain Res 207:233–247

    Article  PubMed Central  PubMed  Google Scholar 

  96. Liu X, Mosier KM et al (2011) Reorganization of finger coordination patterns during adaptation to rotation and scaling of a newly learned sensorimotor transformation. J Neurophysiol 105:454–473

    Article  PubMed Central  PubMed  Google Scholar 

  97. Mosier KM, Sceidt RA et al (2005) Remapping hand movements in a novel geometrical environment. J Neurophysiol 94:4362–4372

    Article  PubMed  Google Scholar 

  98. Masia L, Casadio M, Sandini G, Morasso P (2009) Eye-hand coordination during dynamic visuomotor rotations. PLoS One 4(9):e7004

    Article  PubMed Central  PubMed  Google Scholar 

  99. Masia L, Squeri V, Burdet E, Sandini G, Morasso P (2012) Wrist coordination in a kinematically redundant stabilization task. IEEE Trans Haptics 5(3):231–239

    Article  Google Scholar 

  100. Squeri V, Masia L, Giannoni P, Sandini G, Morasso P (2014) Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy. In: IEEE transactions on neural systems and rehabilitation engineering, vol 22, pp 312–325

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Masia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Masia, L. et al. (2014). Enhancing Recovery of Sensorimotor Functions: The Role of Robot Generated Haptic Feedback in the Re-learning Process. In: Artemiadis, P. (eds) Neuro-Robotics. Trends in Augmentation of Human Performance, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8932-5_11

Download citation

Publish with us

Policies and ethics