Skip to main content

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 60))

  • 1361 Accesses

Abstract

The dominant formation of metastable diamond over stable graphite could be explained by comparing the nucleation barrier between diamond and graphite in Chap. 5 based on the classical nucleation theory. However, very puzzling deposition behaviour was observed on an iron substrate under the condition where diamonds deposit on a silicon substrate . This puzzling deposition behaviour was a starting point for the endeavour to investigate the growth mechanism of diamond .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn H-S, Park H-M, Kim D-Y, Hwang NM (2002) Observation of carbon clusters of a few nanometers in the oxyacetylene diamond CVD process. J Cryst Growth 234(2–3):399–403. doi:http://dx.doi.org/10.1016/S0022-0248(01)01748-1

    Google Scholar 

  • Angus JC, Hayman CC (1988) Low-pressure, metastable growth of diamond and “diamondlike” phases. Science 241(4868):913–921. doi:10.2307/1702445

  • Angus JC, Argoitia A, Gat R, Li Z, Sunkara M, Wang L, Wang Y (1993) Chemical vapour deposition of diamond. Phil Trans R Soc A 342(1664):195–208. doi:10.1098/rsta.1993.0014

  • Bachmann P (1996) Plasma chemical vapor deposition of diamond films. In: A. Paoletti, A. Tucciarone (ed) The Physics of Diamond, vol 135. IOS Press, Varenna, p 45–71. doi:10.3254/978-1-61499-220-2-195

  • Badziag P, Verwoerd WS, Ellis WP, Greiner NR (1990) Nanometre-sized diamonds are more stable than graphite. Nature 343(6255):244–245

    Google Scholar 

  • Badzian AR, Roy R, Mistry P, Turchan M (1997) Laser approaches for diamond synthesis: The QQC process. In: A. Paoletti, A. Tucciaron e(ed) The Physics of Diamond, vol 135. IOS Press, Varenna, p 195–208. doi:10.3254/978-1-61499-220-2-195

  • Barnes MC, Kim D-Y, Ahn HS, Lee CO, Hwang NM (2000) Deposition mechanism of gold by thermal evaporation: approach by charged cluster model. J Cryst Growth 213(1–2):83–92. doi:http://dx.doi.org/10.1016/S0022-0248(00)00359-6

    Google Scholar 

  • Belton DN, Schmieg SJ (1992) Nucleation of chemically vapor deposited diamond on platinum and nickel substrates. Thin Solid Films 212(1):68–80.

    Google Scholar 

  • Bockris JO, Reddy AKN (1977) Modern electrochemistry: An introduction to an interdisciplinary area, vol 5. Plenum Press, New York

    Google Scholar 

  • Buck V (2008) Evidence for charged or polar precursors in diamond nucleation. J Optoelectron Adv Mater 10(1):85–90

    Google Scholar 

  • Butler JE, Sumant AV (2008) The CVD of nanodiamond materials. Chem Vapor Depos 14(7–8):145–160

    Google Scholar 

  • Butler JE, Woodin RL, Brown LM, Fallon P (1993) Thin film diamond growth mechanisms [and Comment]. Phil Trans R Soc A 342(1664):209–224. doi:10.1098/rsta.1993.0015

  • Calcote HF (1981) Mechanisms of soot nucleation in flames—A critical review. Combust Flame 42:215–242. doi:http://dx.doi.org/10.1016/0010-2180(81)90159-0

    Google Scholar 

  • Cappelli MA, Paul P (1990) An investigation of diamond film deposition in a premixed oxyacetylene flame. J Appl Phys 67(5):2596–2602

    Google Scholar 

  • Chonan T, Uenura M, Futaki S, Nishi S (1989) The preparation and characterization of diamond powder by DC arc plasma. Jpn J Appl Phys 28(6A):L1058-L1060

    Google Scholar 

  • Eddy C, Youchison D, Sartwell B, Grabowski K (1992) Deposition of diamond onto aluminum by electron cyclotron resonance microwave plasma-assisted CVD. J Mater Res 7(12):3255–3259

    Google Scholar 

  • Frenklach M, Kematick R, Huang D, Howard W, Spear K, Phelps AW, Koba R (1989) Homogeneous nucleation of diamond powder in the gas phase. J Appl Phys 66(1):395–399. doi:http://dx.doi.org/10.1063/1.343890

    Google Scholar 

  • Frenklach M, Howard W, Huang D, Yuan J, Spear K, Koba R (1991) Induced nucleation of diamond powder. Appl Phys Lett 59(5):546–548. doi:http://dx.doi.org/10.1063/1.105434

    Google Scholar 

  • Gerhardt P, Homann KH (1990a) Ions and charged soot particles in hydrocarbon flames. 2. positive aliphatic and aromatic ions in ethyne/oxygen flames. J Phys Chem 94(13):5381–5391. doi:10.1021/j100376a039

    Google Scholar 

  • Gerhardt P, Löffler S, Homann KH (1987) Polyhedral carbon ions in hydrocarbon flames. Chem Phys Lett 137(4):306–310. doi:http://dx.doi.org/10.1016/0009-2614(87)80889-8

    Google Scholar 

  • Gerhardt PH, Homann KH (1990b) Ions and charged soot particles in hydrocarbon flames I. Nozzle beam sampling: Velocity, energy, and mass analysis; total ion concentrations. Combust Flame 81(3–4):289–303. doi:http://dx.doi.org/10.1016/0010-2180(90)90026-N

    Google Scholar 

  • Gruen DM (1999) Nanocrystalline diamond films 1. Annu Rev Mater Sci 29(1):211–259

    Google Scholar 

  • Gruen DM, Liu S, Krauss AR, Luo J, Pan X (1994) Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions. Appl Phys Lett 64(12):1502–1504. doi:http://dx.doi.org/10.1063/1.111872

    Google Scholar 

  • Gueroudji L, Hwang NM (2000) Thermodynamic limits for the substrate temperature in the CVD diamond process. Diam Relat Mater 9(2):205–211. doi:http://dx.doi.org/10.1016/S0925-9635(00)00232-6

    Google Scholar 

  • Gupta ND, Ghosh S (1946) A report on the wilson cloud chamber and its applications in physics. Rev Mod Phys 18(2):225

    Google Scholar 

  • Hörmann F, Schreck M, Stritzker B (2001) First stages of diamond nucleation on iridium buffer layers. Diam Relat Mater 10(9–10):1617–1621. doi:http://dx.doi.org/10.1016/S0925-9635(01)00431-9

    Google Scholar 

  • Harris SJ, Weiner AM (1985) Chemical kinetics of soot particle growth. Ann Rev Phys Chem 36(1):31–52. doi:10.1146/annurev.pc.36.100185.000335

    Google Scholar 

  • Hirabayashi K, Kimura T, Hirose Y (1993) Morphology of flattened diamond crystals synthesized by the oxy‐acetylene flame method. Appl Phys Lett 62(4):354–356

    Google Scholar 

  • Hirose Y, Amanuma S, Komaki K (1990) The synthesis of high‐quality diamond in combustion flames. J Appl Phys 68(12):6401–6405

    Google Scholar 

  • Homann KH, Traube J (1987) Use of a wien filter for mass and velocity analysis of charged soot particles in a nozzle beam. Berich Bunsen Gesell 91(8):828–833. doi:10.1002/bbpc.19870910814

    Google Scholar 

  • Howard W, Huang D, Yuan J, Frenklach M, Spear K, Koba R, Phelps A (1990) Synthesis of diamond powder in acetylene oxygen plasma. J Appl Phys 68(3):1247–1251. doi:http://dx.doi.org/10.1063/1.346725

    Google Scholar 

  • Huh J-M, Yoon D-Y, Kim D-Y, Hwang N-M (2005) Effect of substrate materials in the low-pressure synthesis of diamond: approach by theory of charged clusters. Z Metallkd 96(3):225–232. doi:10.3139/146.101024

    Google Scholar 

  • Hwang NM (1994) Thermodynamic analysis of the chemical vapor deposition of diamond in the C-H, C-O and C-H-O systems. J Cryst Growth 135(1):165–171. doi:http://dx.doi.org/10.1016/0022-0248(94)90738-2

    Google Scholar 

  • Hwang NM, Yoon DY (1996) Thermodynamic approach to the paradox of diamond formation with simultaneous graphite etching in the low pressure synthesis of diamond. J Cryst Growth 160(1–2):98–103. doi:http://dx.doi.org/10.1016/0022-0248(95)00549-8

    Google Scholar 

  • Hwang NM, Hahn JH, Yoon DY (1996) Charged cluster model in the low pressure synthesis of diamond. J Cryst Growth 162(1):55–68

    Google Scholar 

  • Jeon I-D, Park CJ, Kim D-Y, Hwang NM (2001) Effect of methane concentration on size of charged clusters in the hot filament diamond CVD process. J Cryst Growth 223(1):6–14

    Google Scholar 

  • Jeon J-D, Park CJ, Kim D-Y, Hwang NM (2000) Experimental confirmation of charged carbon clusters in the hot filament diamond reactor. J Cryst Growth 213(1):79–82

    Google Scholar 

  • Jiang X, Schiffmann K, Westphal A, Klages CP (1993) Atomic‐force‐microscopic study of heteroepitaxial diamond nucleation on (100) silicon. Appl Phys Lett 63(9):1203–1205. doi:http://dx.doi.org/10.1063/1.109771

    Google Scholar 

  • Kapil R, Mehta B, Vankar V (1996) Synthesis of 15R polytype of diamond in oxy‐acetylene flame grown diamond thin films. Appl Phys Lett 68(18):2520–2522

    Google Scholar 

  • Kobashi K, Nishimura K, Kawate Y, Horiuchi T (1988) Synthesis of diamonds by use of microwave plasma chemical-vapor deposition: Morphology and growth of diamond films. Phys Rev B 38(6):4067

    Google Scholar 

  • Koizumi S, Murakami T, Inuzuka T, Suzuki K (1990) Epitaxial growth of diamond thin films on cubic boron nitride {111} surfaces by dc plasma chemical vapor deposition. Appl Phys Lett 57(6):563–565. doi:http://dx.doi.org/10.1063/1.103647

    Google Scholar 

  • Lambrecht WRL, Lee CH, Segall B, Angus JC, Li Z, Sunkara M (1993) Diamond nucleation by hydrogenation of the edges of graphitic precursors. Nature 364(6438):607–610

    Google Scholar 

  • Ma G-HM, Lee YH, Glass JT (1990) Electron microscopic characterization of diamond films grown on Si by bias-controlled chemical vapor deposition. J Mater Res 5(11):2367–2377. doi:10.1557/JMR.1990.2367

    Google Scholar 

  • Meakin P (1992) Aggregation kinetics. Phys Scripta 46(4):295

    Google Scholar 

  • Meilunas R, Wong M, Sheng K, Chang R, Van Duyne R (1989) Early stages of plasma synthesis of diamond films. Appl Phys Lett 54(22):2204–2206. doi:http://dx.doi.org/10.1063/1.101124

    Google Scholar 

  • Melnikova V (2005) The cluster growth mechanism of nanostructured diamond. In: Veziroglu TN, Yu. Zaginaichenko S, Schur D, Baranowski B, Shpak A, Skorokhod V (eds) Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, vol 172. NATO Science Series II: Mathematics, Physics and Chemistry. Springer, Netherlands, pp 557–562. doi:10.1007/1-4020-2669-2_64

    Google Scholar 

  • Mistry P, Turchan M, Liu S, Granse G, Baurmann T, Shara M (1996) A revolutionary diamond synthesis technique: the QQC materials deposition process. Innov Mater Res 1(2):193–207

    Google Scholar 

  • Mitura Sw (1987) Nucleation of diamond powder particles in an RF methane plasma. J Cryst Growth 80(2):417–424. doi:http://dx.doi.org/10.1016/0022-0248(87)90090-X

    Google Scholar 

  • Mori Y, Deguchi M, Kitabatake M, Yagi H, Hatta A, Ito T, Hirao T, Hiraki A Ion-induced fabrication of high-quality diamond particles on various substrates. In: San Diego’92, 1992. SPIE, pp 18–24

    Google Scholar 

  • Palnichenko AV, Jonas AM, Charlier JC, Aronin AS, Issi JP (1999) Diamond formation by thermal activation of graphite. Nature 402(6758):162–165

    Google Scholar 

  • Park N, Park S, Hwang N-M, Ihm J, Tejima S, Nakamura H (2004) First-principles study of the effect of charge on the stability of a diamond nanocluster surface. Phys Rev B 69(19):195411

    Google Scholar 

  • Peyrou C (1967) Bubble chamber principles. In: Bubble and Spark Chambers: Volume II; Principles and Use, Academic Press, New York, p 20

    Google Scholar 

  • Pierson HO (1992) Handbook of chemical vapor deposition: principles, technology and applications. Noyes Publications, New York

    Google Scholar 

  • Sawabe A, Inuzuka T (1985) Growth of diamond thin films by electron assisted chemical vapor deposition. Appl Phys Lett 46(2):146–147. doi:http://dx.doi.org/10.1063/1.95715

    Google Scholar 

  • Sawabe A, Inuzuka T (1986) Growth of diamond thin films by electron-assisted chemical vapour deposition and their characterization. Thin Solid Films 137(1):89–99. doi:http://dx.doi.org/10.1016/0040-6090(86)90197-5

    Google Scholar 

  • Shaw DJ, Costello B (1993) Introduction to colloid and surface chemistry. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Spitsyn BV, Bouilov LL, Derjaguin BV (1981) Vapor growth of diamond on diamond and other surfaces. J Cryst Growth 52:219–226. doi:http://dx.doi.org/10.1016/0022-0248(81)90197-4

    Google Scholar 

  • Stoner B, Glass J (1992) Textured diamond growth on (100) β‐SiC via microwave plasma chemical vapor deposition. Appl Phys Lett 60(6):698–700. doi:http://dx.doi.org/10.1063/1.106541

    Google Scholar 

  • Sunagawa I (1987) Morphology of minerals. Morphology of crystals, vol 2. Terra Scientific Publishing Co, Tokyo, pp 511–587

    Google Scholar 

  • Sunagawa I (1990) Growth and morphology of diamond crystals under stable and metastable conditions. J Cryst Growth 99(1–4 pt 2):1156–1161. doi: 10.1016/S0022-0248(08)80100-5

    Google Scholar 

  • Suzuki K, Sawabe A, Yasuda H, Inuzuka T (1987) Growth of diamond thin films by dc plasma chemical vapor deposition. Appl Phys Lett 50(12):728

    Google Scholar 

  • Takagi T, Yamada I, Sasaki A (1976) An evaluation of metal and semiconductor films formed by ionized-cluster beam deposition. Thin Solid Films 39:207–217. doi:http://dx.doi.org/10.1016/0040-6090(76)90638-6

    Google Scholar 

  • Van der Drift A (1967) Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res Rep 22(3):267–288

    Google Scholar 

  • Weilmünster P, Keller A, Homann KH (1999) Large molecules, radicals, ions, and small soot particles in fuel-rich hydrocarbon flames: Part I: positive ions of polycyclic aromatic hydrocarbons(PAH) in low-pressure premixed flames of acetylene and oxygen. Combust Flame 116(1–2):62–83. doi:http://dx.doi.org/10.1016/S0010-2180(98)00049-2

    Google Scholar 

  • Williams BE, Glass JT (1989) Characterization of diamond thin films: Diamond phase identification, surface morphology, and defect structures. J Mater Res 4(02):373–384. doi:10.1557/JMR.1989.0373

    Google Scholar 

  • Wilson JG (2014) The principles of cloud-chamber technique. Cambridge University Press

    Google Scholar 

  • Yoshimoto M, Yoshida K, Maruta H, Hishitani Y, Koinuma H, Nishio S, Kakihana M, Tachibana T (1999) Epitaxial diamond growth on sapphire in an oxidizing environment. Nature 399(6734):340–342

    Google Scholar 

  • Yugo S, Kimura T, Muto T (1990) Effects of electric field on the growth of diamond by microwave plasma CVD. Vacuum 41(4):1364–1367

    Google Scholar 

  • Zhang GF, Buck V (2000) Influence of geometry factors of in situ dc glow discharge on the diamond nucleation in a hot-filament chemical vapor deposition system. Surf Coat Technol 132(2–3):256–261. doi:http://dx.doi.org/10.1016/S0257-8972(00)00907-5

    Google Scholar 

  • Zhou D, McCauley TG, Qin LC, Krauss AR, Gruen DM (1998) Synthesis of nanocrystalline diamond thin films from an Ar-Ch4 microwave plasma. J Appl Phys 83(1):540

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nong Moon Hwang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hwang, N.M. (2016). Growth Mechanism of CVD Diamond. In: Non-Classical Crystallization of Thin Films and Nanostructures in CVD and PVD Processes. Springer Series in Surface Sciences, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7616-5_6

Download citation

Publish with us

Policies and ethics