Skip to main content

Effects of Global Warming and Ocean Acidification on Carbonate Budgets of Eastern Pacific Coral Reefs

  • Chapter
  • First Online:
Coral Reefs of the Eastern Tropical Pacific

Part of the book series: Coral Reefs of the World ((CORW,volume 8))

Abstract

Eastern tropical Pacific (ETP) coral reefs provide a real-world example of reef growth, development, structure, and function under the high-pCO2, low aragonite saturation state (Ωarag) conditions expected for the entire tropical surface ocean with a doubling to tripling of atmospheric CO2. This provides a unique opportunity to examine various aspects of calcium carbonate (CaCO3) budgets in low-Ωarag conditions in the present day. Unlike anywhere else in the world, the ETP displays a continuum of thermal stress and CO2 inputs up to levels at which reef building is terminated and reef structures are lost. The response of coral reef CaCO3 budgets to El Niño warming across the ETP shows that reefs can be completely lost after experiencing a 2–3 °C thermal anomaly sustained in excess of two months during the warmest time of the year at Ωarag values expected for the rest of the tropics when atmospheric CO2 doubles. ETP coral reefs have persisted and shown resilience to this level of thermal stress or acidification when acting alone, but the combination of the two corresponded with the complete elimination of reef framework structures in the southern Galápagos Islands over the decade after the 1982–83 El Niño warming event. Reef carbonate degradation is exacerbated also by diverse agents of bioerosion such as sea urchins, boring bivalves, and excavating sponges, with experimental evidence demonstrating that the latter may even increase their activities during ocean warming and pH decline. This chapter reviews the CaCO3 budget of ETP coral reefs and discusses how a high-CO2 world may impact the major biotic and abiotic factors responsible for the cycling of carbonate materials. Coral reefs of the ETP serve as a model for conditions that will occur in other regions within a few decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adey WH (1978) Coral reef morphogenesis: a multidimensional model. Science 202:831–837

    Article  CAS  Google Scholar 

  • Albright R, Mason B, Miller M, Langdon C (2010) Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata. Proc Nat Acad Sci USA 107:20400–20404

    Google Scholar 

  • Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc R Soc Lond B 276:3019–3025

    Google Scholar 

  • Andersson AJ, Mackenzie FT, Ver LM (2003) Solution of shallow-water carbonates: an insignificant buffer against rising atmospheric CO2. Geology 31:513–516

    Article  CAS  Google Scholar 

  • Andersson AJ, Mackenzie FT, Bates NR (2008) Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers Mar Ecol Prog Ser 373:265–273

    Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Nat Acad Sci USA 105:17442–17446

    Google Scholar 

  • Anthony KRN, Maynard JA, Diaz-Pulido G, Mumby PJ, Cao L, Marshall PA, Hoegh-Guldberg O (2011) Ocean acidification and warming will lower coral reef resilience. Glob Change Biol 17:1798–1808

    Article  Google Scholar 

  • Aronson RB, Precht WF (2001) White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460:25–38

    Article  Google Scholar 

  • Bak RPM, Nieuwland G, Meesters EH (2009) Coral growth rates revisited after 31 years: what is causing lower extension rates in Acropora palmata? Bull Mar Sci 84:287–294

    Google Scholar 

  • Baker AC (2001) Reef corals bleach to survive change. Nature 411:765–766

    Article  CAS  Google Scholar 

  • Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471

    Article  Google Scholar 

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Coral reefs: corals’ adaptive response to climate change. Nature 430:741

    Article  CAS  Google Scholar 

  • Bates NR, Amat A, Andersson AJ (2009) The interaction of ocean acidification and carbonate chemistry on coral reef calcification: evaluating the carbonate chemistry Coral Reef Ecosystem Feedback (CREF) hypothesis on the Bermuda coral reef. Biogeosci Discuss 6:7627–7672

    Article  Google Scholar 

  • Bathurst RGC (1966) Boring algae, micrite envelopes, and lithification of molluscan biospartites. Geol J 5:15–32

    Article  Google Scholar 

  • Berkelmans R (2002) Time-integrated thermal bleaching thresholds of reefs and their variation on the Great Barrier Reef. Mar Ecol Prog Ser 229:73–82

    Article  Google Scholar 

  • Berkelmans R, Willis B (1999) Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore central Great Barrier Reef. Coral Reefs 18:219–228

    Article  Google Scholar 

  • Brainard RE, Birkeland C, Eakin CM, McElhany P, Miller MW, Patterson M, Piniak GA, Dunlap MJ, Weijerman M (2013) Incorporating climate change and ocean acidification into extinction risk assessments for 82 coral species. Conserv Biol 27:1169–1178

    Article  Google Scholar 

  • Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:S129–S138

    Article  Google Scholar 

  • Buddemeier RW, Oberdorfer JA (1986) Internal hydrology and geochemistry of coral reefs and atoll islands: key to diagenetic variations. In: Schroeder JH, Purser BH (eds) Reef diagenesis. Springer, Heidelberg, pp 91–111

    Chapter  Google Scholar 

  • Bustamante RH, Okey TA, Banks S (2008) Biodiversity and food web structure of a Galápagos shallow rocky-reef ecosystem. In: McClanahan TR, Branch GM (eds) Food webs and the dynamics of marine reefs. Oxford Univ Press, Oxford, pp 135–161

    Chapter  Google Scholar 

  • Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden MJ, Wu L, England MH, Wang G, Guilyardi E, Jin F-F (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4:111–116

    Article  CAS  Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  CAS  Google Scholar 

  • Calderón-Aguilera LE, Reyes Bonilla H, Carriquiry JD (2007) El papel de los arrecifes coralinos en el flujo de carbono en el océano: estudios en el Pacífico mexicano. In: Hernández de la Torre B, Gaxiola Castro G (eds) Carbono en ecosistemas acuáticos de México. México, SEMARNAT-INE-CICESE pp 215–226. ISBN: 978-968-817-855-3

    Google Scholar 

  • Cantera JR, Orozco C, Londoño-Cruz E, Toro G (2003) Abundance and distribution patterns of infaunal associates and macroborers of the branched coral in Gorgona Island. Bull Mar Sci 72:207–219

    Google Scholar 

  • Carballo JL, Bautista-Guerrero E, Leyte-Morales GE (2008) Boring sponges and the modeling of coral reefs in the east Pacific Ocean. Mar Ecol Prog Ser 356:113–122

    Article  Google Scholar 

  • Cohen AL, Holcomb M (2009) Why corals care about acidification: uncovering the mechanism. Oceanogr 22:118–127

    Article  Google Scholar 

  • Connell JH (1997) Disturbance and recovery of coral assemblages. In: Proceedings of 8th International Coral Reef Symposium, vol 1, Panama, pp 9–22

    Google Scholar 

  • Cooper TF, De’ath G, Fabricius K, Lough JM (2008) Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob Change Biol 14:529–538

    Google Scholar 

  • Cooper TF, O’Leary RA, Lough JA (2012) Growth of Western Australian corals in the Anthropocene. Science 335:593–596

    Article  CAS  Google Scholar 

  • Cortés J (1997) Biology and geology of eastern Pacific coral reefs. Coral Reefs 16:S39–S46

    Article  Google Scholar 

  • Cortés J, Macintyre IG, Glynn PW (1994) Holocene growth history of an eastern Pacific fringing reef, Punta Islotes, Costa Rica. Coral Reefs 13:65–73

    Article  Google Scholar 

  • Dana TF (1975) Development of contemporary eastern Pacific coral reefs. Mar Biol 33:355–374

    Article  Google Scholar 

  • Darwin C (1842) The structure and distribution of coral reefs. Smith, Elder and Co, London, p 214

    Google Scholar 

  • D’Croz L, O’Dea A (2007) Variability in upwelling along the Pacific shelf of Panamá and implications for the distribution of nutrients and chlorophyll. Est Coast Shelf Sci 73:325–340

    Article  Google Scholar 

  • De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323:116–119

    Google Scholar 

  • De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci USA 109:17995–17999

    Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Donner SD, Skirving WJ, Little CM, Hoegh-Guldberg O, Oppenheimer M (2005) Global assessment of coral bleaching and required rates of adaptation under climate change. Glob Change Biol 11:2251–2265

    Article  Google Scholar 

  • Donner SD, Heron SF, Skirving WJ (2009) Future scenarios: a review of modelling efforts to predict the future of coral reefs in an era of climate change. In: van Oppen MJH, Lough JM (eds) Coral bleaching: patterns, processes, causes and consequences. Springer-Verlag, Berlin, pp 159–173

    Chapter  Google Scholar 

  • Eakin CM (1992) Post-El Niño panamanian reefs: less accretion, more erosion and damselfish protection. In: Proceedings of 7th International Coral Reef Symposium, vol 1, Guam, pp 387–396

    Google Scholar 

  • Eakin CM (1996) Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982-1983 El Niño at Uva Island in the eastern Pacific. Coral Reefs 15:109–119

    Google Scholar 

  • Eakin CM (2001) A tale of two ENSO events: carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panamá. Bull Mar Sci 69:171–186

    Google Scholar 

  • Eakin CM, Lough JM, Heron SF (2009) Climate variability and change: monitoring data and evidence for increased coral bleaching stress. In: van Oppen MJH, Lough JM (eds) Coral bleaching: patterns, processes, causes and consequences. Springer-Verlag, Berlin, pp 41–67

    Chapter  Google Scholar 

  • Eakin CM, Morgan JA, Heron SF, Smith TB, Liu G et al (2010) Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5(11):e13969. doi:10.1371/journal.pone.0013969

    Article  CAS  Google Scholar 

  • Edmunds PJ (2007) Evidence for a decadal-scale decline in the growth rates of juvenile scleractinian corals. Mar Ecol Prog Ser 341:1–13

    Article  Google Scholar 

  • Enochs IC, Manzello DP, Carlton RD, Graham DM, Ruzicka R, Collela MA (2015) Ocean acidification enhances the bioerosion of a common coral reef sponge: implications for the persistence of the Florida Reef Tract. Bull Mar Sci 91:271–290

    Article  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1:165–169 doi: 10.1038/NCLIMATE1122

  • Fang JKH, Mello-Athayde MA, Schönberg CHL, Kline DI, Hoegh-Guldberg O, Dove S (2013) Sponge biomass and bioerosion rates increase under ocean warming and acidification. Glob Change Biol 19:3581–3591 doi:10.1111/gcb.12334

    Google Scholar 

  • Fang JKH, Schönberg CHL, Mello-Athayde MA, Hoegh-Guldberg O, Dove S (2014) Effects of ocean warming and acidification on the energy budget of an excavating sponge. Glob Change Biol 20:1043–1054 doi:10.1111/gcb.12369

    Google Scholar 

  • Feely RA, Doney SC, Cooley SR (2009) Present conditions and future changes in a high-CO2 world. Oceanography 22(4):37–47

    Article  Google Scholar 

  • Fonseca AC, Dean HK, Cortés J (2006) Non-colonial coral macro-borers as indicators of coral reef status in the south Pacific of Costa Rica. Rev Biol Trop 54:101–115

    Article  CAS  Google Scholar 

  • Friedrich T, Timmermann A, Abe-Ouchi A, Bates NR, Chikamoto MO, Church MJ, Dore JE, Gledhill DK, Gonzalez-Davila M, Heinemann M, Ilyina T, Jungclaus JH, McLeod E, Mouchet A, Santana-Casiano JM (2012) Detecting regional anthropogenic trends in ocean acidification against natural variability. Nat Clim Change 2:167–171 doi:10.1038/NCLIMATE1372

    Google Scholar 

  • Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    Article  CAS  Google Scholar 

  • Glynn PW (1976) Some physical and biological determinants of coral community structure in the eastern Pacific. Ecol Monogr 46:431–456

    Article  Google Scholar 

  • Glynn PW (1977) Coral growth in upwelling and nonupwelling areas off the Pacific coast of Panamá. J Mar Res 35:567–585

    Google Scholar 

  • Glynn PW (1983) Extensive ‘bleaching’ and death of reef corals on the Pacific coast of Panamá. Environ Conserv 10:149–154

    Article  Google Scholar 

  • Glynn PW (1984) Widespread coral mortality and the 1982/83 El Niño warming event. Environ Conserv 11:133–146

    Article  Google Scholar 

  • Glynn PW (1988) El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea 7:129–160

    Google Scholar 

  • Glynn PW (1990) Coral mortality and disturbance to coral reefs in the eastern tropical Pacific. In: Glynn PW (ed) Global ecological consequences of the 1982-83 El Niño-Southern Oscillation. Elsevier, Amsterdam, pp 55–126

    Chapter  Google Scholar 

  • Glynn PW (1991) Coral reef bleaching in the 1980s and possible connections with global warming. Trends Ecol Evol 6:175–179

    Article  CAS  Google Scholar 

  • Glynn PW (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12:1–17

    Article  Google Scholar 

  • Glynn PW (1994) State of coral reefs in the Galápagos Islands: natural vs. anthropogenic impacts. Mar Poll Bull 29:131–140

    Article  CAS  Google Scholar 

  • Glynn PW (2011) In tandem reef coral and cryptic metazoan declines and extinctions. Bull Mar Sci 87:767–794

    Article  Google Scholar 

  • Glynn PW, Macintyre IG (1977) Growth rate and age of coral reefs on the Pacific coast of Panama. In: Proceedings of 3rd International Coral Reef Symposium, vol 2, Miami, pp 251–259

    Google Scholar 

  • Glynn PW, D’Croz L (1990) Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8:181–191

    Article  Google Scholar 

  • Glynn PW, de Weerdt (1991) Elimination of two reef-building hydrocorals following the 1982-83 El Niño warming event. Science 253:69–71

    Article  CAS  Google Scholar 

  • Glynn PW, Colgan MW (1992) Sporadic disturbances in fluctuating coral reef environments: El Niño and coral reef development in the eastern Pacific. Am Zool 32:707–718

    Article  Google Scholar 

  • Glynn PW, Feingold J (1992) Hydrocoral species not extinct. Science 257:1845

    Article  Google Scholar 

  • Glynn PW, Maté JM (1997) Field guide to the Pacific coral reefs of Panamá. In: Proceedings of 8th International Coral Reef Symposium, vol 1, Panama, pp 145–166

    Google Scholar 

  • Glynn PW, Fong P (2006) Patterns of reef coral recovery by the regrowth of surviving tissues following the 1997-98 EI Niño warming and 2000, 2001 upwelling events in Panamá, eastern Pacific. In: Proceedings of 10th International Coral Reef Symposium, vol 1, Okinawa, pp 624–630

    Google Scholar 

  • Glynn PW, Stewart RH, McCosker JE (1972) Pacific coral reefs of Panama: structure, distribution, and predators. Geol Rundsch 61:483–519

    Article  Google Scholar 

  • Glynn PW, Wellington GM, Birkeland C (1979) Coral reef growth in the Galápagos: limitation by sea urchins. Science 203:47–49

    Article  CAS  Google Scholar 

  • Glynn PW, Maté JM, Baker AC, Calderón MO (2001) Coral bleaching and mortality in Panamá and Ecuador during the 1997-98 El Niño-Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982-83 event. Bull Mar Sci 69:79–110

    Google Scholar 

  • Glynn PW, Manzello DP (2015) Bioerosion and Coral Reef Growth: A Dynamic Balance. In: Birkeland C (ed) Coral Reefs in the Anthropocene. Springer, Dordrecht. pp. 67–97

    Google Scholar 

  • Glynn PW, Riegl B, Purkis S, Kerr JM, Smith TB (2015) Coral reef recovery in the Galápagos Islands: the northernnmost islands (Darwin and Wenman). Coral Reefs 34:421–436 doi:10.1007/s00338-015-1280-4

    Google Scholar 

  • Glynn PW, Gassman NJ, Eakin CM, Cortés J, Smith DB, Guzmán HM (1991) Reef coral reproduction in the eastern Pacific: Costa Rica, Panamá, Galápagos Islands (Ecuador). I. Pocilloporidae. Mar Biol 109:355–368

    Article  Google Scholar 

  • Glynn PW, Colley SB, Guzmán HM, Enochs IC, Cortés J, Maté JL, Feingold JS (2011) Reef coral reproduction in the eastern Pacific: Costa Rica, Panamá, Galápagos Islands (Ecuador). VI. Agariciidae. Pavona clavus. Mar Biol 158:1601–1617

    Article  Google Scholar 

  • Goreau TF, Hartman WD (1963) Boring sponges as controlling factors in the formation and maintenance of coral reefs. AAAS Spec Publ 75:25–54

    Google Scholar 

  • Goreau TF, Macfarlane AH (1990) Reduced growth rate of Montastraea annularis following the 1987–1988 coral bleaching event. Coral Reefs 8:211–215

    Article  Google Scholar 

  • Goreau TJ, Hayes RL (1994) Coral bleaching and ocean Hot Spots. Ambio 23:176–180

    Google Scholar 

  • Grigg RW (1998) Holocene coral reef accretion in Hawaii: a function of wave exposure and sea level history. Coral Reefs 17:263–272

    Article  Google Scholar 

  • Guzmán HM, Cortés J (1989) Coral reef community structure at Caño Island. Pacific Costa Rica. PSZNI: Mar Ecol 10:23–41

    Google Scholar 

  • Guzmán HM, Robertson R (1989) Population and feeding responses of the corallivorous pufferfish Arothron meleagris to coral mortality in the eastern Pacific. Mar Ecol Prog Ser 55:121–131

    Article  Google Scholar 

  • Helmle KP, Dodge RE, Swart PK, Gledhill DK, Eakin CM (2011) Growth rates of Florida corals from 1937 to 1996 and their response to climate change. Nat Comm 2:215

    Article  CAS  Google Scholar 

  • Highsmith RC (1981) Coral bioerosion: damage relative to skeletal density. Am Nat 117:193–198

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshwat Res 50:839–866

    Article  Google Scholar 

  • Hoegh-Guldberg O (2011) The impact of climate change on coral reef ecosystems. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Berlin, pp 391–403

    Chapter  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  Google Scholar 

  • Hofman GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA, Klinger T, Sewell MA (2010) The effects of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Ann Rev Ecol Evol Syst 41:127–147

    Article  Google Scholar 

  • Hubbard DK, Miller AI, Scutaro D (1990) Production and cycling of calcium carbonate in a shelf-edge reef system (St. Croix, U.S. Virgin Islands): applications to the nature of reef systems in the fossil record. J Sed Petrol 60:335–360

    Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    Article  CAS  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  Google Scholar 

  • Hutchings PA (1986) Biological destruction of coral reefs. Coral Reefs 4:239–253

    Article  Google Scholar 

  • IPCC (2011) Summary for policymakers of the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX), p 29

    Google Scholar 

  • IPCC (2013) Summary for policymakers. In: climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth assessment report of the intergovernmental panel on climate change In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge Univ Press, Cambridge

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. contribution of Working Group II to the Fifth assessment report of the intergovernmental panel on climate change. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea P, White LL (eds) Cambridge Univ Press, Cambridge

    Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638

    Article  CAS  Google Scholar 

  • James NP, Ginsburg RN, Marzalek DS, Choquette PW (1976) Facies and fabric specificity of early subsea cements in shallow Belize (British Honduras) reefs. J Sed Petrol 46:523–544

    CAS  Google Scholar 

  • James NP, Ginsburg RN (1979) The seaward margin of Belize barrier and atoll reefs. Spec Pub Int Ass Sed Blackwell, Oxford, p 191

    Google Scholar 

  • Jones AM, Berkelmans R (2011) Tradeoffs to thermal acclimation: energetics and reproduction of a reef coral with heat tolerant Symbiodinium type-D. J Mar Bio. doi:10.1155/2011/185890

    Google Scholar 

  • Kennedy EV, Perry CT, Halloran PR, Iglesias-Prieto R, Schönberg CHL, Wisshak M, Form AU, Carricart-Ganivet JP, Fine M, Eakin CM, Mumby PJ (2013) Avoiding coral reef functional collapse requires local and global action. Current Biol 23:912–918

    Article  CAS  Google Scholar 

  • Kinsey DW (1978) Productivity and calcification estimates using slack-water periods and field enclosures. In: Stoddart DR, Johannes RE (eds) Coral reefs: research methods. UNESCO, pp 439–468

    Google Scholar 

  • Kleemann K (1990) Boring and growth in chemically boring bivalves from the Caribbean, Eastern Pacific and Australia’s Great Barrier Reef. Senck Marit Frankfurt/Main 21(1):101–154

    Google Scholar 

  • Kleemann K (2013) Fast and massive settlement of boring bivalves on coral slabs at Taboga Islands, Eastern Pacific, Panama. Boll Malacolog 49:104–113

    Google Scholar 

  • Kleypas JA, Eakin CM (2007) Scientists’ perceptions of threats to coral reefs: results of a survey of coral reef researchers. Bull Mar Sci 80:419–436

    Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  CAS  Google Scholar 

  • Kobluk DR, Risk MJ (1977a) Micritization and carbonate-grain binding by endolithic algae. Am Assoc Petrol Geol Bull 61:1069–1082

    CAS  Google Scholar 

  • Kobluk DR, Risk MJ (1977b) Calcification of exposed filaments of endolithic algae, micrite envelope formation and sediment production. J Sed Petrol 47:517–528

    CAS  Google Scholar 

  • Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110:1–16

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Reyes-Bonilla H, Warner ME (2007) Spring “bleaching” among Pocillopora in the Sea of Cortez, Eastern Pacific. Coral Reefs 26:265–270

    Article  Google Scholar 

  • LaJeunesse TC, Reyes Bonilla H, Warner ME, Wills M, Schmidt GW, Fitt WK (2008) Specificity and stability in high latitude eastern Pacific coral-algal symbioses. Limnol Oceanogr 53:719–727

    Article  Google Scholar 

  • Lazar B, Loya Y (1991) Bioerosion of coral reefs-a chemical approach. Limnol Oceanogr 36:377–383

    Article  CAS  Google Scholar 

  • Leder JJ, Szmant AM, Swart PK (1991) The effect of prolonged ‘bleaching’ on the stable isotope composition and banding patterns in Montastraea annularis. Preliminary observations. Coral Reefs 10:19–27

    Article  Google Scholar 

  • Leyte-Morales GE (2001) Estructura de la comunidad de corales y características geomorfológicas de los arrecifes coralinos de bahías de Huatulco, Oaxaca, México. MSc thesis, UMAR, p 94

    Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, Friedlingstein P, Gurney K, Houghton RA, House JI, Huntingford C, Levy PE, Lomas MR, Majkut J, Metzl N, Ometto JP, Peters GP, Prentice IC, Randerson JT, Running SW, Sarmiento JL, Schuster U, Sitch S, Takahashi T, Viovy N, van der Werf GR, Woodward FI (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836

    Article  CAS  Google Scholar 

  • Lirman D, Glynn PW, Baker AC, Leyte-Morales GE (2001) Combined effects of three sequential storms on the Huatulco coral reef tract, Mexico. Bull Mar Sci 69:267–278

    Google Scholar 

  • Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth of reef corals. Science 304:1492–1494

    Article  CAS  Google Scholar 

  • Logan CA, Dunne JP, Eakin CM, Donner SD (2014) Incorporating adaptive responses into future projections of coral bleaching. Glob Change Biol 20:125–139

    Article  Google Scholar 

  • Londoño-Cruz E, Cantera JR, Toro-Farmer G, Orozco C (2003) Internal bioerosion by macroborers in Pocillopora spp. in the Tropical Eastern Pacific. Mar Ecol Prog Ser 265:289–295

    Article  Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243

    Article  Google Scholar 

  • Macintyre IG (1984) Preburial and shallow-subsurface alteration of modern scleractinian corals. In: Oliver WA, Sando WJ, Cairns SD, Coates AG, Macintyre IG, Bayer FM, Sorauf JE (eds) Recent advances in the paleobiology and geology of the Cnidaria. Palaeontogr Americana 54:229–244

    Google Scholar 

  • Macintyre IG (1997) Reevaluating the role of crustose coralline algae in the construction of coral reefs. In: Proceedings of 8th International Coral Reef Symposium, vol 1, Panama, pp 725–730

    Google Scholar 

  • Macintyre IG, Marshall JF (1988) Submarine lithification in coral reefs: some facts and misconceptions. In: Proceedings of 6th International Coral Reef Symposium, vol 1, Townsville, pp 263–272

    Google Scholar 

  • Macintyre IG, Aronson RB (2006) Lithified and unlithified Mg-calcite precipitates in tropical reef environments. J Sed Res 76:81–90

    Article  CAS  Google Scholar 

  • Macintyre IG, Glynn PW, Cortés J (1992) Holocene reef history in the eastern Pacific: mainland Costa Rica, Caño Island, Cocos Island, and Galápagos Islands. In: Proceedings of 7th International Coral Reef Symposium, vol 2, Guam, pp 1174–1178

    Google Scholar 

  • Manzello DP (2009) Reef development and resilience to acute (El Niño warming) and chronic (high-CO2) disturbances in the eastern tropical Pacific: a real-world climate change model. In: Proceedings of 11th International Coral Reef Symposium, vol 1, Ft Lauderdale, pp 1299–1304

    Google Scholar 

  • Manzello DP (2010a) Ocean acidification hotspots: spatiotemporal dynamics of the seawater CO2 system of eastern Pacific coral reefs. Limnol Oceanogr 55:239–248

    Article  CAS  Google Scholar 

  • Manzello DP (2010b) Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29:749–758

    Article  Google Scholar 

  • Manzello DP, Kleypas JA, Budd DA, Eakin CM, Glynn PW, Langdon C (2008) Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. Proc Natl Acad Sci USA 105:10450–10455

    Article  CAS  Google Scholar 

  • Manzello DP, Enochs IC, Bruckner A, Renaud P, Kolodziej G, Budd D, Carlton R, Glynn PW (2014) Galápagos coral reef persistence after ENSO warming across an acidification gradient. Geophys Res Lett 41(24):9001–9008

    Article  Google Scholar 

  • Manzello DP, Enochs IC, Kolodziej G, Carlton R (2015a) Recent decade of growth and calcification of Orbicella faveolata in the Florida keys: An inshore-offshore comparison. Mar Ecol Prog Ser 521:81–89

    Article  Google Scholar 

  • Manzello DP, Enochs IC, Kolodziej G, Carlton R (2015b) Coral growth patterns of Montastraea cavernosa and Porites astreoides in the Florida keys: the importance of thermal stress and inimical waters. J Exp Mar Biol Ecol 471:198–207

    Article  Google Scholar 

  • McCulloch M, Falter J, Trotter J, Montagna P (2012) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Change 2:623–627

    Article  CAS  Google Scholar 

  • McPhaden M (1999) El Niño: the child prodigy of 1997-98. Nature 398:559–562

    Article  CAS  Google Scholar 

  • Nakamura M, Ohki S, Suzuki A, Sakai K (2011) Coral larvae under ocean acidification: survival, metabolism, and metamorphosis. PLoS ONE 6(1):e14521. doi:10.1371/journal.pone.0014521

    Article  CAS  Google Scholar 

  • Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge Cliona lampa. Limnol Oceanogr 11:92–108

    Article  Google Scholar 

  • Nothdurft LD, Webb GE (2009) Earliest diagenesis in scleractinian coral skeletons: implications for palaeoclimate-sensitive geochemical archives. Facies 55:161–201

    Article  Google Scholar 

  • Nozagaray-López CO, Calderon-Aguilera LE, Hernández-Ayón JM, Reyes-Bonilla H, Carricart-Ganivet JP, Cabral-Tena RA, Balart EF (2014) Low calcification rates and calcium carbonate production in Porites panamensis at its northernmost geographic distribution. Mar Ecol. doi:10.1111/maec.12227

    Google Scholar 

  • Okey TA, Banks S, Born AF, Bustamante RH, Calvopiña M, Edgar GJ, Espinoza E, Fariña JM, Garske LE, Reck GK, Salazar S, Shepherd S, Toral-Granda V, Wallem P (2004) A trophic model of a Galápagos subtidal rocky reef for evaluating fisheries and conservation strategies. Ecol Model 172:383–401

    Article  Google Scholar 

  • Orme GR (1977) Aspects of sedimentation in the coral reef environment. In: Jones OA, Endean R (eds) Biology and geology of coral reefs, vol 4. Academic Press, New York, pp 129–176

    Chapter  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  Google Scholar 

  • Palacios MM, Muñoz CG, Zapata FA (2014) Fish corallivory on a pocilloporid reef and experimental coral responses to predation. Coral Reefs 33:625–636 doi:10.1007/s00338-014-1173-y

    Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422

    Article  CAS  Google Scholar 

  • Perry CT, Hepburn LJ (2008) Syn-depositional alteration of coral reef framework through bioerosion, encrustation, and cementation: taphonomic signatures of reef accretion and reef depositional events. Earth Rev Sci 86:106–144

    Article  Google Scholar 

  • Perry CT, Murphy GN, Kench PS, Smithers SG, Edinger EN, Steneck RS, Mumby PJ (2013) Caribbean-wide decline in carbonate production threatens coral reef growth. Nat Comm 4:1–7

    Article  CAS  Google Scholar 

  • Rasser MW, Riegl B (2002) Holocene coral reef rubble and its binding agents. Coral Reefs 21:57–72

    Article  Google Scholar 

  • Reaka-Kudla ML, Feingold JS, Glynn PW (1996) Experimental studies of rapid bioerosion of coral reefs in the Galápagos Islands. Coral Reefs 15:109–119

    Article  Google Scholar 

  • Rees SA, Opdyke BN, Wilson PA, Henstock TJ (2007) Significance of Halimeda bioherms to the global carbonate budget based on a geological sediment budget for the Northern Great Barrier Reef, Australia. Coral Reefs 26:177–188

    Article  Google Scholar 

  • Reid RP, Macintyre IG (1998) Carbonate recrystallization in shallow marine environments: a widespread diagenetic process forming micritized grains. J Sed Res 68:928–946

    Article  CAS  Google Scholar 

  • Reyes-Bonilla H (1993) Estructura de la comunidad, influencia de la depredación y biología poblacional de corales hermatípicos en el arrecife de Cabo Pulmo, BCS. MSc thesis, Centro de Investigación Científica y Enseñanza Superior de Ensenada, p 169

    Google Scholar 

  • Reyes Bonilla H, Alvarez del Castillo Cárdenas PA, Calderón Aguilera LE, Erosa Ricárdez CE, Fernández Rivera Melo FJ, Frausto TC, Luna Salguero BM, Moreno Sánchez XG, Mozqueda Torres MC, Norzagaray López CO, Petatán Ramírez D (2014) Servicios ambientales de arrecifes coralinos: el caso del Parque Nacional Cabo Pulmo, B.C.S. In: Urciaga García JI (ed) Desarrollo regional en Baja California Sur. Una perspectiva de los servicios

    Google Scholar 

  • Reyes-Nivia C, Diaz-Pulido G, Kline D, Hoegh-Guldberg O, Dove S (2013) Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Glob Change Biol 19:1919–1929

    Article  Google Scholar 

  • Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pages C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Change Biol 9:1660–1668

    Article  Google Scholar 

  • Risk MJ, MacGeachy JK (1978) Aspects of bioerosion of modern Caribbean reefs. Rev Biol Trop 2:S85–S105

    Google Scholar 

  • Rodolfo-Metalpa R, Houlbrèque F, Tambutté E, Boisson F, Baggini C, Patti FP, Jeffree R, Fine M, Foggo A, Gattuso J-P, Hall-Spencer J (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Clim Change 1:308–312

    Article  CAS  Google Scholar 

  • Rose CS, Risk MJ (1985) Increase in Cliona delitrix infestation of Montastraea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. PSZNI: Mar Ecol 6:345–363

    Article  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  CAS  Google Scholar 

  • Schönberg CHL (2002) Substrate effects on the bioeroding demosponge Cliona orientalis. 1. Bioerosion rates. PSZNI: Mar Ecol 23:313–326

    Google Scholar 

  • Scoffin TP, Stearn CW, Boucher D, Frydl P, Hawkins CM, Hunter IG, MacGeachy JK (1980) Calcium carbonate budget of a fringing reef on the west coast of Barbados. Part II—erosion, sediments and internal structure. Bull Mar Sci 30:475–508

    CAS  Google Scholar 

  • Scott PJB, Risk MJ (1988) The effect of Lithophaga (Bivalvia: Mytilidae) boreholes on the strength of the coral Porites lobata. Coral Reefs 7:145–151

    Article  CAS  Google Scholar 

  • Scott PJB, Risk MJ, Carriquiry JD (1988) El Niño, bioerosion and the survival of east Pacific coral reefs. In: Proceedings of 6th International Coral Reef Symposium, vol 2, Townsville, pp 517–520

    Google Scholar 

  • Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett 36:L05606. doi:10.1029/2008GL03628

    Article  CAS  Google Scholar 

  • Stat M, Gates RD (2011) Clade D Symbiodinium in scleractinian corals: a “nugget” of hope, a selfish opportunist, an ominous sign, or all of the above? J Mar Biol. doi:10.1155/2011/730715

    Google Scholar 

  • Tanzil JTI, Brown BE, Tudhope AW, Dunne RP (2009) Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005. Coral Reefs 28:519–528

    Article  Google Scholar 

  • Takahashi T, Feely RA, Weiss RF, Wanninkhof RH, Chipman DW, Sutherland SC, Takahashi TT (1997) Global air-sea flux of CO2: an estimate based on measurements of sea-air pCO2 difference. Proc Natl Acad Sci USA 94:8292–8299

    Google Scholar 

  • Tribble GW (1993) Organic matter oxidation and aragonite diagenesis in a coral reef. J Sed Petrol 63:523–527

    CAS  Google Scholar 

  • Tribble GW, Sansone FJ, Buddemeier RW, Li Y-H (1992) Hydraulic exchange between a coral reef and surface sea water. Geol Soc Am Bull 104:1280–1291

    Google Scholar 

  • Tribollet A, Golubic S (2005) Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef. Coral Reefs 24:422–434

    Article  Google Scholar 

  • Tribollet A, Decherf G, Hutchings PA, Peyrot-Clausade M (2002) Large-scale spatial variability in bioerosion of experimental coral substrates on the Great Barrier Reef (Australia): importance of microborers. Coral Reefs 21:424–432

    Google Scholar 

  • Tribollet A, Godinot C, Atkinson M, Langdon C (2009) Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Glob Biogeochem Cycl 23:GB3008

    Google Scholar 

  • van Hooidonk R, Maynard J, Manzello DP, Planes S (2014) Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob Change Biol 20:103–112

    Article  Google Scholar 

  • Wang C, Weisberg RH (2000) The 1997–98 El Niño evolution relative to previous El Niño events. J Climate 13:488–501

    Article  Google Scholar 

  • Wellington GM, Glynn PW (2007) Responses of coral reefs to El Niño-Southern Oscillation sea-warming events. In: Aronson RB (ed) Geological approaches to coral reef ecology, Ecol Stud 192. Springer, New York, pp 342–385

    Chapter  Google Scholar 

  • Wisshak M, Schönberg CHL, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PLoS ONE 7:e45124

    Article  CAS  Google Scholar 

  • Wisshak M, Schönberg CHL, Form A, Freiwald A (2013) Effects of ocean acidification and global warming on reef bioerosion—lessons from a clionaid sponge. Aquatic Biol 19:111–127

    Article  Google Scholar 

  • Wolter K, Timlin MS (1998) Measuring the strength of ENSO events: how does 1997/98 rank? Weather 53:315–324

    Article  Google Scholar 

  • Yates KK, Halley RB (2006) CO 2−3 concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii. Biogeosci Discuss 3:123–154

    Article  Google Scholar 

  • Zachos JC, Rohl R, Schellenberg SA, Sluijs A, Hodell DA, Kelly DC, Thomas E, Nicolo M, Raffi I, Lourens LJ, McCarren H, Kroon D (2005) Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308:1611–1615

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for funding from the National Oceanic and Atmospheric Administration’s Coral Reef Conservation Program and the National Science Foundation (OCE-00002317 and OCE-0526361 to PW Glynn). The contents of this chapter are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of NOAA or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek P. Manzello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Manzello, D., Mark Eakin, C., Glynn, P.W. (2017). Effects of Global Warming and Ocean Acidification on Carbonate Budgets of Eastern Pacific Coral Reefs. In: Glynn, P., Manzello, D., Enochs, I. (eds) Coral Reefs of the Eastern Tropical Pacific. Coral Reefs of the World, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7499-4_18

Download citation

Publish with us

Policies and ethics