Skip to main content

Exploring Coral Reefs Using the Tools of Molecular Genetics

  • Chapter
Coral Reefs in the Anthropocene

Abstract

The tools of molecular genetics have been transformed over the last decades and have in turn transformed our understanding of coral reefs. Initially limited to information on single genes, we are now capable of analyzing entire genomes. These developments make it possible to do many things that were either impossible or extremely difficult before: identify cryptic species, microbes, larvae and gut contents; determine relationships among populations and species; characterize reproductive and dispersal patterns; infer mechanisms of speciation; and soon perhaps embark on genetic engineering. Notably, many aspects of coral reef conservation can and will increasingly benefit from insights derived from the application of molecular genetic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Some terms and concepts useful for understanding molecular genetic studies.

References

  • Almany GR, Hamilton RJ, Bode M et al (2013) Dispersal of grouper larvae drives local resource sharing in a coral reef fishery. Curr Biol 23:626–630

    Article  CAS  PubMed  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Ann Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Baker DM, Weigt L, Fogel M et al (2013) Ancient DNA from coral-hosted Symbiodinium reveal a static mutualism over the last 172 years. PLoS One 8:e55057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barber PH, Palumbi SR, Erdmann MV (2000) Biogeography – a marine Wallace’s line? Nature 406:692–693

    Article  CAS  PubMed  Google Scholar 

  • Barrott KL, Rodriguez-Brito B, Janouskovec J et al (2011) Microbial diversity associated with four functional groups of benthic reef algae and the reef-building coral Montastraea annularis. Environ Microbiol 13:1192–1204

    Article  Google Scholar 

  • Bascompte J, Melián CJ, Sala E (2005) Interaction strength combinations and the overfishing of a marine food web. Proc Natl Acad Sci U S A 102:5443–5447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bernardi G, Beldade R, Holbrook SJ et al (2012) Full-sibs in cohorts of newly settled coral reef fishes. PLoS One 7:e44953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Betancur-R R, Hines A, Acero A et al (2011) Reconstructing the lionfish invasion: insights into Greater Caribbean biogeography. J Biogeogr 38:1281–1293

    Article  Google Scholar 

  • Bowen BW, Rocha LA, Toonen RJ et al (2013) The origins of tropical marine biodiversity. Trends Ecol Evol 28:359–366

    Article  PubMed  Google Scholar 

  • Carlon DB, Lippé C (2011) Estimation of mating systems in short and tall ecomorphs of the coral Favia fragum. Mol Ecol 20:812–828

    Article  PubMed  Google Scholar 

  • Closek CJ, Sunagawa S, DeSalvo MK et al (2014) Coral transcriptome and bacterial community profiles reveal distinct yellow band disease states in Orbicella faveolata. ISME J 8:2411–2422

    Article  CAS  PubMed  Google Scholar 

  • Combosch DJ, Vollmer SV (2013) Mixed asexual and sexual reproduction in the Indo-Pacific reef coral Pocillopora damicornis. Ecol Evol 3:3379–3387

    PubMed Central  PubMed  Google Scholar 

  • Cox CE, Jones CD, Wares JP et al (2013) Genetic testing reveals some mislabelling but general compliance with a ban on herbivorous fish harvesting in Belize. Conserv Lett 6:132–140

    Article  Google Scholar 

  • Delrieu-Trottin E, Maynard J, Planes S (2014) Endemic and widespread coral reef fishes have similar mitochondrial genetic diversity. Proc R Soc B 281:20141068

    Google Scholar 

  • Dinsdale EA, Pantos O, Smriga S et al (2008) Microbial ecology of four coral atolls in the Northern Line Islands. PLoS One 3:e1584

    Article  PubMed Central  PubMed  Google Scholar 

  • Drake JL, Mass T, Haramaty L et al (2013) Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata. Proc Natl Acad Sci U S A 110:3788–3793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duffy JE (1996) Species boundaries, specialization, and the radiation of sponge-dwelling alpheid shrimp. Biol J Linn Soc 58:307–324

    Article  Google Scholar 

  • Duran S, Rützler K (2006) Ecological speciation in a Caribbean marine sponge. Mol Phylogenet Evol 40:292–297

    Article  CAS  PubMed  Google Scholar 

  • Fogarty ND, Vollmer SV, Levitan DR (2012) Weak prezygotic isolating mechanisms in threatened Acropora corals. PLoS One 7:e30486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foster NL, Baums IB, Sanchez JA et al (2013) Hurricane-driven patterns of clonality in an ecosystem engineer: the Caribbean coral Montastraea annularis. PLoS One 8:e53283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fukami H, Budd AF, Levitan DR et al (2004) Geographical differences in species boundaries among members of the Montastraea anularis complex based on molecular and morphological markers. Evolution 58:324–337

    Article  CAS  PubMed  Google Scholar 

  • Fukami H, Chen CA, Budd AF et al (2008) Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PLoS One 3:e3222

    Article  PubMed Central  PubMed  Google Scholar 

  • Hemond EM, Kaluziak ST, Vollmer SV (2014) The genetics of colony form and function in Caribbean Acropora corals. BMC Genomics 15:1133

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang D, Roy K (2015) The future of evolutionary diversity in reef corals. Philos Trans Roy Soc B 370:20140010

    Google Scholar 

  • Huang D, Meier R, Todd PA et al (2008) Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J Mol Evol 66:167–174

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Benzoni F, Arrigoni R et al (2014) Towards a phylogenetic classification of reef corals: the Indo-Pacific genera Merulina, Goniastrea and Scapophyllia (Scleractinia, Merulindae). Zool Scr 43:531–548

    Article  Google Scholar 

  • Hubert N, Espiau B, Meyer C et al (2015) Identifying the ichthyoplankton of a coral reef using DNA barcodes. Mol Ecol Resour 15:57–67

    Article  CAS  PubMed  Google Scholar 

  • Hume BCC, D’Angelo C, Smith EG et al (2015) Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Sci Rep 5:8562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jackson JBC, Cheetham AH (1990) Evolutionary significance of morphospecies: a test with cheilostome Bryozoa. Science 248:579–583

    Article  CAS  PubMed  Google Scholar 

  • Kelly LW, Williams GJ, Barott KL et al (2014) Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. Proc Natl Acad Sci 111:10227–10232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keshavmurthy S, Yang S-Y, Alamaru A et al (2013) DNA barcoding reveals the coral “laboratory-rat”, Stylophora pistillata encompasses multiple identities. Sci Rep 3:1520

    Article  PubMed Central  PubMed  Google Scholar 

  • Kitahara MV, Cairns SD, Stolarski J et al (2010) A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial COI sequence data. PLoS One 5:e11490

    Article  PubMed Central  PubMed  Google Scholar 

  • Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420:73–90

    Article  CAS  Google Scholar 

  • Knowlton N, Jackson JBC (1994) New taxonomy and niche partitioning on coral reefs: jack of all trades or master of some? Trends Ecol Evol 9:7–9

    Article  CAS  PubMed  Google Scholar 

  • Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc B 265:2257–2263

    Article  PubMed Central  Google Scholar 

  • Lasker HR, Gutierrez-Rodriguez C, Bala K et al (2008) Male reproductive success during spawning events of the octocoral Pseudopterogorgia elisabethae. Mar Ecol Prog Ser 367:153–161

    Article  Google Scholar 

  • Leray M, Knowlton N (2015) DNA barcoding and metabarcoding reveal patterns of diversity in cryptic benthic communities. Proc Natl Acad Sci U S A 112:2076–2081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leray M, Yang JY, Meyer CP et al (2013) A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool 10:34

    Article  PubMed Central  PubMed  Google Scholar 

  • Lessios HA (2007) Reproductive isolation between species of sea urchins. Bull Mar Sci 81:191–208

    Google Scholar 

  • Lessios HA (2008) The great American schism: divergence of marine organisms after the rise of the Central American Isthmus. Ann Rev Ecol Evol Syst 39:63–91

    Article  Google Scholar 

  • Lessios HA (2011) Speciation genes in free-spawning marine invertebrates. Integr Comp Biol 51:456–465

    Article  CAS  PubMed  Google Scholar 

  • Lessios HA, Robertson DR (2006) Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proc R Soc B 273:2201–2208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lessios HA, Garrido MJ, Kessing BD (2001) Demographic history of Diadema antillarum, a keystone herbivore on Caribbean reefs. Proc R Soc B 268:2347–2353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levitan DR, Fogarty ND, Jara J et al (2011) Genetic, spatial, and temporal components of precise spawning synchrony in reef building corals of the Montastraea annularis species complex. Evolution 65:1254–1270

    Article  PubMed  Google Scholar 

  • Levy O, Appelbaum L, Leggat W et al (2007) Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science 318:467–470

    Article  CAS  PubMed  Google Scholar 

  • Libro S, Kaluziak ST, Vollmer SV (2013) RNA-seq profiles of immune related genes in the staghorn coral Acropora cervicornis infected with white band disease. PLoS One 8:e81821

    Article  PubMed Central  PubMed  Google Scholar 

  • Lim YW, Cuevas DA, Silva GGZ et al (2014) Sequencing at sea: challenges and experiences in Ion Torrent PGM sequencing during the 2013 Southern Line Islands Research Expedition. Peer J 2:e520

    Article  PubMed Central  PubMed  Google Scholar 

  • Lundgren P, Vera JC, Peplow L et al (2013) Genotype-environment correlations in corals from the Great Barrier Reef. BMC Genet 14:9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marko PB, Lee SC, Rice AM et al (2004) Fisheries: mislabeling of a depleted reef fish. Nature 430:309–310

    Article  CAS  PubMed  Google Scholar 

  • McFadden CS, Benayahu Y, Pante E et al (2011) Limitations of mitochondrial gene barcoding in Octocorallia. Mol Ecol Resour 11:19–31

    Article  CAS  PubMed  Google Scholar 

  • Meyer CP (2003) Molecular systematics of cowries (Gastropoda: Cypraeidae) and diversification patterns in the tropics. Biol J Linn Soc 79:401–459

    Article  Google Scholar 

  • Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:e422

    Article  PubMed Central  PubMed  Google Scholar 

  • Meyer CP, Geller JB, Paulay G (2005) Fine scale endemism on coral reefs: archipelagic differentiation in turbinid gastropods. Evolution 59:113–125

    Article  PubMed  Google Scholar 

  • Moya A, Huisman L, Foret S et al (2015) Rapid acclimation of juvenile corals to CO2-mediated acidification by upregulation of heat shock and Bcl-2 genes. Mol Ecol 24:438–452

    Article  CAS  PubMed  Google Scholar 

  • Munday PL, van Herwerden L, Dudgeon CL (2004) Evidence of sympatric speciation by host shift in the sea. Curr Biol 14:1498–1504

    Article  CAS  PubMed  Google Scholar 

  • Palumbi SR, Vollmer S, Romano S et al (2012) The role of genes in understanding the evolutionary ecology of reef building corals. Evol Ecol 26:317–335

    Article  Google Scholar 

  • Plaisance L, Caley MJ, Brainard RE et al (2011) The diversity of coral reefs: what are we missing? PLoS One 6:e325026

    Article  Google Scholar 

  • Pollock FJ, Morris PJ, Willis BL et al (2011) The urgent need for robust coral diagnostics. PLoS Pathog 7:e1002183

    Article  PubMed Central  PubMed  Google Scholar 

  • Prada C, DeBiasse MB, Neigel JE et al (2014a) Genetic delineation among branching Caribbean Porites corals. Coral Reefs 33:1019–1030

    Article  Google Scholar 

  • Prada C, Mcilroy SE, Beltran DM et al (2014b) Cryptic diversity hides host and habitat specialization in a gorgonian-algal symbiosis. Mol Ecol 23:3330–3340

    Article  PubMed  Google Scholar 

  • Puebla O, Bermingham E, Guichard F (2012) Pairing dynamics and the origin of species. Proc R Soc B 279:1085–1092

    Article  PubMed Central  PubMed  Google Scholar 

  • Puillandre N, Strong EE, Bouchet P et al (2009) Identifying gastropod spawn from DNA barcodes: possible but not yet practicable. Mol Ecol Resour 9:1311–1321

    Article  CAS  PubMed  Google Scholar 

  • Puillandre N, Bouchet P, Duda TF et al (2014) Molecular phylogeny and evolution of the cone snails (Gastropoda, Conoidea). Mol Phylogenet Evol 78:290–303

    Article  CAS  PubMed  Google Scholar 

  • Puritz JB, Keever CC, Addison JA et al (2012) Extraordinarily rapid life-history divergence between Cryptasterina sea star species. Proc R Soc B 279:3914–3922

    Article  PubMed Central  PubMed  Google Scholar 

  • Quenouille B, Bermingham E, Planes S (2004) Molecular systematics of the damselfishes (Teleostei: Pomacentridae): Bayesian phylogenetic analyses of mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 31:66–88

    Article  CAS  PubMed  Google Scholar 

  • Quigley KM, Davies SW, Kenkel CD et al (2014) Deep-sequencing method for quantifying background abundances of Symbiodinium types: exploring the rare Symbiodinium biosphere in reef-building corals. PLoS One 9:e94297

    Article  PubMed Central  PubMed  Google Scholar 

  • Richards ZT, van Oppen MJH (2012) Rarity and genetic diversity in Indo-Pacific Acropora corals. Ecol Evol 2:1867–1888

    Article  PubMed Central  PubMed  Google Scholar 

  • Roberts CM, McClean CJ, Veron JE et al (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284

    Article  CAS  PubMed  Google Scholar 

  • Rocha LA, Robertson DR, Roman J et al (2005) Ecological speciation in tropical reef fishes. Proc R Soc B 272:573–579

    Article  PubMed Central  PubMed  Google Scholar 

  • Rocha LA, Craig MT, Bowen BW (2007) Phylogeography and the conservation of coral reef fishes. Coral Reefs 26:501–512

    Article  Google Scholar 

  • Romano SL, Palumbi SR (1996) Evolution of scleractinian corals inferred from molecular systematics. Science 271:640–642

    Article  CAS  Google Scholar 

  • Rosic N, Kaniewska P, Chan C-KK et al (2014) Early transcriptional changes in the reef-building coral Acropora aspera in response to thermal and nutrient stress. BMC Genom 15:1052

    Article  Google Scholar 

  • Saenz-Agudelo P, Jones GP, Thorrold SR et al (2011) Connectivity dominates larval replenishment in a coastal reef fish metapopulation. Proc R Soc B 278:2954–2961

    Article  PubMed Central  PubMed  Google Scholar 

  • Schweinsberg M, Gonzalez Pech RA, Tollrian R et al (2014) Transfer of intracolonial genetic variability through gametes in Acropora hyacinthus corals. Coral Reefs 33:77–87

    Article  Google Scholar 

  • Shearer TL, Coffroth MA (2008) Barcoding corals: limited by interspecific divergence, not intraspecific variation. Mol Ecol Resourc 8:247–255

    Article  CAS  Google Scholar 

  • Shearer TL, Snell TW, Hay ME (2014) Gene expression of corals in response to macroalgal competitors. PLoS One 9:e114525

    Article  PubMed Central  PubMed  Google Scholar 

  • Shinzato C, Mungpakdee S, Satoh N et al (2014) A genomic approach to coral-dinoflagellate symbiosis: studies of Acropora digitifera and Symbiodinium minutum. Front Microbiol 5:00336

    Google Scholar 

  • Thurber RV, Willner-Hall D, Rodriguez-Mueller B et al (2009) Metagenomic analysis of stressed coral holobionts. Environ Microbiol 11:2148–2163

    Article  CAS  Google Scholar 

  • Timmers MA, Bird CE, Skillings DJ et al (2012) There’s no place like home: crown-of-thorn outbreaks in the central Pacific are regionally derived and independent events. PLoS One 7:e31159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tonk L, Sampayo EM, LaJeunesse TC et al (2014) Symbiodinium (Dinophyceae) diversity in reef-invertebrates along an offshore to inshore reef gradient near Lizard Island, Great Barrier Reef. J Phycol 50:552–563

    Article  CAS  Google Scholar 

  • Valdez-Moreno M, Quintal-Lizama C, Gómez-Lozano R et al (2012) Monitoring an alien invasion: DNA barcoding and the identification of lionfish and their prey on coral reefs of the Mexican Caribbean. PLoS One 7:e36636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van der Meer MH, Hobbs J-PA, Jones GP et al (2012) Genetic connectivity among and self-replenishment within island populations of a restricted range subtropical reef fish. PLoS One 7:e49660

    Article  PubMed Central  PubMed  Google Scholar 

  • van Oppen MJH, Oliver JK, Putnam HM et al (2015) Building coral reef resilience through assisted evolution. Proc Natl Acad Sci U S A 112:2307–2313

    Article  PubMed Central  PubMed  Google Scholar 

  • Vieira C, D’hondt S, de Clerck O et al (2014) Towards an inordinate fondness for stars, beetles and Lobophora? Species diversity of the genus Lobophora (Dictyotales, Phaeophyceae) in New Caledonia. J Phycol 50:1101–1119

    Article  CAS  Google Scholar 

  • Vogler C, Benzie J, Lessios H et al (2008) A threat to coral reefs multiplied? Four species of crown-of-thorns starfish. Biol Lett 4:696–699

    Article  PubMed Central  PubMed  Google Scholar 

  • Vollmer SV, Palumbi SR (2002) Hybridization and the evolution of reef coral diversity. Science 296:2023–2025

    Article  CAS  PubMed  Google Scholar 

  • Westneat MW, Alfaro ME (2005) Phylogenetic relationships and evolutionary history of the reef fish family Labridae. Mol Phylogenet Evol 36:370–390

    Article  PubMed  Google Scholar 

  • Williams ST, Knowlton N, Jara J et al (2003) The marine Indo-West Pacific break: contrasting the resolving power of mitochondrial and nuclear genes. Integr Comp Biol 42:941–952

    Article  Google Scholar 

  • Wooninck LM, Warner RR, Fleischer RC (2000) Relative fitness components measured with competitive PCR. Mol Ecol 9:1409–1414

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Knowlton .

Editor information

Editors and Affiliations

Glossary

Some terms and concepts useful for understanding molecular genetic studies.

Barcode

is a standard short stretch of DNA that is unique to each species and therefore used to delineate species or identify unknown specimens. In animals, the most common barcode is a 658 bp segment of the mitochondrial cytochrome c oxidase subunit I gene.

Barcode of Life Data Systems (BOLD)

is an online platform for the storage, analysis and publication of DNA barcode records.

Coalescent theory

uses a mathematical model to reconstruct the genealogy of genes back to their common ancestor.

DNA microarray

analyses are most commonly used to measure the expression levels of a large number of target genes simultaneously. Microarray chips contain thousands of microscopic spots where specific DNA probes are inserted. The relative abundance of target genes is quantified via fluorescence when target DNA hybridizes to probes.

Environmental DNA

is the sum total of DNA in an environmental sample. It comprises not only the DNA from intact organisms in the sample, but also other sources of cellular or extracellular DNA released by an organism into the environment (e.g. in mucus, gametes, feces).

Expressed Sequence Tags (ESTs)

are portions of complementary DNA (cDNA) that are constructed from messenger RNA. These fragments of expressed coding genes are used for gene discovery, mapping, gene prediction, gene expression and polymorphism analysis.

GenBank

is a publicly available collection of DNA sequences hosted by the National Institute of Health (NIH).

Genome

is the entirety of the genetic information contained in an organism.

Genomic library

is the collection of DNA fragments representing the genome of an organism stored as short fragments within many individual bacteria or yeast cells. Such collections facilitated early efforts at genome sequencing .

Genomics

is the quantitative analysis of the genome.

High-throughput sequencing

technologies (i.e. pyrosequencing, semiconductor sequencing ) produce millions of sequences concurrently within a few hours. These technologies have drastically lowered the cost of studies that require large amounts of sequence data .

Metabarcoding

uses DNA-based species identification and high-throughput sequencing as a cost - and time-effective way to infer the species composition of environmental samples (e.g. plankton, sediments).

Metagenomics

is the study of the genetic material collected from the environment. It provides a profile of diversity , including many small organisms that cannot be cultured, and a detailed characterization of the metabolic genes present in an environmental sample.

MicroRNA (miRNA)

are short non-coding RNA molecules (approximately 22 nucleotides in length) found in the genomes of plants, animals and some viruses that play a key role in the regulation of gene expression.

Microsatellites

are short repeating DNA sequences (two to ten base pairs in length) found across the genome of a species. Because they evolve rapidly, they are especially useful for population studies and individual fingerprinting.

Molecular clock

is a mathematical approach that uses the fossil record and rates of DNA sequence evolution to estimate the time since two species or a group of species diverged.

Molecular cloning

is a technique that uses a host organism (easy-to-grow bacteria) to replicate a single DNA molecule into multiple identical copies.

Nuclear DNA/organelle DNA/ribosomal DNA

are different types of DNA found in the nucleus and organelles (such as the mitochondria, mtDNA) of eukaryotic organisms. Ribosomal DNA (rDNA) refers to the genes that code the RNA that makes up the ribosomes.

Operational Taxonomic Units (OTUs)

are low-level taxa often equivalent to species that are defined genetically rather than being identified to species using traditional morphological methods.

Phylogeography

is the study of historical processes (i.e. vicariance, population expansion) that explain the present day distribution of populations or species using mitochondrial/nuclear gene genealogies.

Polymerase Chain Reaction (PCR)

is used to replicate a single copy of a DNA fragment into millions of copies of the same DNA fragment within a few hours, allowing the DNA to be sequenced.

Primers

are strands of nucleic acids used as a starting point for DNA replication during the polymerase chain reaction.

Protein electrophoresis

is a laboratory technique used to separate individual proteins from complex mixtures using differences in size and electric charge. This was one of the first molecular genetic tools to be used in coral reef studies.

Proteomics

is the study of the composition, structure and function of the whole set of proteins produced by the coding genes of an organism.

Restriction-site Associated DNA (or RAD)

sequencing is a method used to sample thousands of random parts of the genome of many individuals simultaneously using high-throughput sequencing. Because it analyzes a small fraction of the entire genome, it allows affordable study of many markers across the genome for population genetic studies in non-model species.

Restriction Fragment Length Polymorphism (RFLP)

analysis is a DNA profiling technique that uses restriction enzymes to cut stretches of DNA at specific genetic sequences within a gene, followed by analysis of variation in the lengths of the fragments.

Sanger Capillary Sequencing

is an automated DNA sequencing technology developed in 1977 by Fred Sanger. It uses a laser to read the position and identity of dye-labeled nucleotides on DNA fragments previously amplified via PCR.

Shotgun Sequencing

is a method used to read the sequence of very long stretches of DNA (i.e. genomes). The process involves shearing the long DNA stretch into smaller fragments (<1000 bp) that can be sequenced individually and later reassembled bioinformatically using overlapping regions.

Single Nucleotide Polymorphism (SNP)

is a genetic variant at one position in a DNA sequence shared by multiple individuals in a population. The frequency of different SNP alleles can be analyzed with respect to such factors as environment or geographic locale.

Transcriptomics

is the study of sets of genes expressed in the genome of a given organism under specific conditions.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Knowlton, N., Leray, M. (2015). Exploring Coral Reefs Using the Tools of Molecular Genetics. In: Birkeland, C. (eds) Coral Reefs in the Anthropocene. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7249-5_6

Download citation

Publish with us

Policies and ethics