Skip to main content

Bioenergetics Modeling of Percid Fishes

  • Chapter
Biology and Culture of Percid Fishes

Abstract

A bioenergetics model for a percid fish represents a quantitative description of the fish’s energy budget. Bioenergetics modeling can be used to identify the important factors determining growth of percids in lakes, rivers, or seas. For example, bioenergetics modeling applied to yellow perch (Perca flavescens) in the western and central basins of Lake Erie revealed that the slower growth in the western basin was attributable to limitations in suitably sized prey in western Lake Erie, rather than differences in water temperature between the two basins. Bioenergetics modeling can also be applied to a percid population to estimate the amount of food being annually consumed by the percid population. For example, bioenergetics modeling applied to the walleye (Sander vitreus) population in Lake Erie has provided fishery managers valuable insights into changes in the population’s predatory demand over time. In addition, bioenergetics modeling has been used to quantify the effect of the difference in growth between the sexes on contaminant accumulation in walleye. Field and laboratory evaluations of percid bioenergetics model performance have documented a systematic bias, such that the models overestimate consumption at low feeding rates but underestimate consumption at high feeding rates. However, more recent studies have shown that this systematic bias was due, at least in part, to an error in the energy budget balancing algorithm used in the computer software. Future research work is needed to more thoroughly assess the field and laboratory performance of percid bioenergetics models and to quantify differences in activity and standard metabolic rate between the sexes of mature percids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams SM, McLean RB, Huffman MM (1982) Structuring of a predator population through temperature-mediated effects on prey availability. Can J Fish Aquat Sci 39:1175–1184

    Article  Google Scholar 

  • Bajer PG, Whitledge GW, Hayward RS, Zweifel RD (2003) Laboratory evaluation of two bioenergetics models applied to yellow perch: identification of a major source of systematic error. J Fish Biol 62:436–454

    Article  Google Scholar 

  • Bajer PG, Whitledge GW, Hayward RS (2004) Widespread consumption-dependent systematic error in fish bioenergetics models and its implications. Can J Fish Aquat Sci 61:2158–2167

    Article  Google Scholar 

  • Becker DS, Bigham GN (1995) Distribution of mercury in the aquatic food web of Onondaga Lake, New York. Water Air Soil Pollut 80:563–571

    Article  CAS  Google Scholar 

  • Boisclair D, Leggett WC (1989) The importance of activity in bioenergetics models applied to actively foraging fishes. Can J Fish Aquat Sci 46:1859–1867

    Article  Google Scholar 

  • Brandt SB, Constantini M, Kolesar S, Ludsin SA, Mason DM, Rae CM, Zhang H (2011) Does hypoxia reduce habitat quality for Lake Erie walleye (Sander vitreus)? A bioenergetics perspective. Can J Fish Aquat Sci 68:857–879

    Article  Google Scholar 

  • Brett JR, Groves TDD (1979) Physiological energetics. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology, vol VIII. Academic, New York

    Google Scholar 

  • Bunnell DB, Johnson TB, Knight CT (2005) The impact of introduced round gobies (Neogobius melanostomus) on phosphorus cycling in central Lake Erie. Can J Fish Aquat Sci 62:15–29

    Article  CAS  Google Scholar 

  • Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity. Bioscience 35:634–639

    Article  Google Scholar 

  • Chipps SR, Wahl DH (2008) Bioenergetics modeling in the 21st century: reviewing new insights and revisiting old constraints. Trans Am Fish Soc 137:298–313

    Article  Google Scholar 

  • Ciancio J, Beauchamp DA, Pascual M (2010) Marine effect of introduced salmonids: prey consumption by exotic steelhead and anadromous brown trout in the Patagonian Continental Shelf. Limnol Oceanogr 55:2181–2192

    Article  Google Scholar 

  • Eggers DM (1979) Comments on some recent methods for estimating food consumption by fish. J Fish Res Board Can 36:1018–1019

    Article  Google Scholar 

  • Elliott JM, Persson L (1978) The estimation of daily rates of food consumption for fish. J Anim Ecol 47:977–991

    Article  Google Scholar 

  • Forney JL (1977) Reconstruction of yellow perch (Perca flavescens) cohorts from examination of walleye (Stizostedion vitreum vitreum) stomachs. J Fish Res Board Can 34:925–932

    Article  Google Scholar 

  • Hansen MJ, Boisclair D, Brandt SB, Hewett SW, Kitchell JF, Lucas MC, Ney JJ (1993) Applications of bioenergetics models to fish ecology and management: where do we go from here? Trans Am Fish Soc 122:1019–1030

    Article  Google Scholar 

  • Hanson PC, Johnson TB, Schindler DE, Kitchell JF (1997) Fish bioenergetics 3.0. University of Wisconsin, Sea Grant Institute, WISCU-T-97-001, Madison

    Google Scholar 

  • Hartman KJ, Margraf FJ (1992) Effects of prey and predator abundances on prey consumption and growth of walleyes in western Lake Erie. Trans Am Fish Soc 121:245–260

    Article  Google Scholar 

  • Hartman KJ, Margraf FJ (1993) Evidence of predatory control of yellow perch (Perca flavescens) recruitment in Lake Erie, U.S.A. J Fish Biol 43:109–119

    Article  Google Scholar 

  • Hayward RS, Margraf FJ (1987) Eutrophication effects on prey size and food available to yellow perch in Lake Erie. Trans Am Fish Soc 116:210–223

    Article  Google Scholar 

  • Hewett SW, Johnson BL (1987) A generalized bioenergetics model of fish growth for microcomputers. University of Wisconsin, Sea Grant Institute, WIS-SG-87-245, Madison

    Google Scholar 

  • Hewett SW, Johnson BL (1992) Fish bioenergetics model 2. University of Wisconsin, Sea Grant Institute, WIS-SG-92-250, Madison

    Google Scholar 

  • Hewett SW, Kraft CE, Johnson BL (1991) Consumption, growth, and allometry: a comment on Boisclair and Leggett (1989a, 1989b, 1989c, 1989d). Can J Fish Aquat Sci 48:1334–1337

    Article  Google Scholar 

  • Hilborn R, Walters CJ (1992) Quantitative fisheries stock assessment: choice, dynamics, and uncertainty. Chapman and Hall, New York

    Book  Google Scholar 

  • Hill DK, Magnuson JJ (1990) Potential effects of global climate warming on the growth and prey consumption of Great Lakes fish. Trans Am Fish Soc 119:265–275

    Article  Google Scholar 

  • Jobling M (1981) Mathematical models of gastric emptying and the estimation of daily rates of food consumption for fish. J Fish Biol 19:245–257

    Article  Google Scholar 

  • Johnson BM, Luecke C, Stewart RS, Staggs MD, Gilbert SJ, Kitchell JF (1992) Forecasting effects of harvest regulations and stocking of walleyes on prey fish communities in Lake Mendota, Wisconsin. N Am J Fish Manag 12:797–807

    Article  Google Scholar 

  • Jones ML, Koonce JF, O’Gorman R (1993) Sustainability of hatchery-dependent salmonine fisheries in Lake Ontario: the conflict between predator demand and prey supply. Trans Am Fish Soc 122:1002–1018

    Article  Google Scholar 

  • Karås P, Thoresson G (1992) An application of a bioenergetics model to Eurasian perch (Perca fluviatilis L.). J Fish Biol 41:217–230

    Article  Google Scholar 

  • Karjalainen J, Miserque D, Huuskonen H (1997) The estimation of food consumption in larval and juvenile fish: experimental evaluation of bioenergetics models. J Fish Biol 51(Suppl A):39–51

    Article  Google Scholar 

  • Kershner MW, Schael DM, Knight RL, Stein RA, Marschall EA (1999) Modeling sources of variation for growth and predatory demand of Lake Erie walleye (Stizostedion vitreum), 1986–1995. Can J Fish Aquat Sci 56:527–538

    Article  Google Scholar 

  • Keskinen T, Jääskeläinen J, Marjomäki TJ, Matilainen T, Karjalainen J (2008) A bioenergetics model for zander: construction, validation, and evaluation of uncertainty caused by multiple input parameters. Trans Am Fish Soc 137:1741–1755

    Article  Google Scholar 

  • Kitchell JF, Koonce JF, O’Neill RV, Shugart HH Jr, Magnuson JJ, Booth RS (1974) Model of fish biomass dynamics. Trans Am Fish Soc 103:786–798

    Article  Google Scholar 

  • Kitchell JF, Stewart DJ, Weininger D (1977) Applications of a bioenergetics model to yellow perch (Perca flavescens) and walleye (Stizostedion vitreum vitreum). J Fish Res Board Can 34:1922–1935

    Article  Google Scholar 

  • Kooijman SALM (1993) Dynamic energy budgets in biological systems: theory and applications in ecotoxicology. Cambridge University Press, New York

    Google Scholar 

  • Kooijman SALM (2010) Dynamic energy budget theory for metabolic organization, 3rd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Kraft CE (1992) Estimates of phosphorus and nitrogen cycling by fish using a bioenergetics approach. Can J Fish Aquat Sci 49:2596–2604

    Article  CAS  Google Scholar 

  • Kraft CE (1993) Phosphorus regeneration by Lake Michigan alewives in the mid-1970s. Trans Am Fish Soc 122:749–755

    Article  CAS  Google Scholar 

  • Lantry BF, Rudstam LG, Forney JL, VanDeValk AJ, Mills EL, Stewart DJ, Adams JV (2008) Comparisons between consumption estimates from bioenergetics simulations and field measurements for walleyes from Oneida Lake, New York. Trans Am Fish Soc 137:1406–1421

    Article  Google Scholar 

  • Lyons J, Magnuson JJ (1987) Effects of walleye predation on the population dynamics of small littoral-zone fishes in a northern Wisconsin lake. Trans Am Fish Soc 116:29–39

    Article  Google Scholar 

  • Madenjian CP (2011a) Bioenergetics in ecosystems. In: Farrell AP (ed) Encyclopedia of fish physiology: from genome to environment. Elsevier, Oxford

    Google Scholar 

  • Madenjian CP (2011b) Sex effect on polychlorinated biphenyl concentrations in fish: a synthesis. Fish Fish 12:451–460

    Article  Google Scholar 

  • Madenjian CP, Wang C (2013) Reevaluation of a walleye (Sander vitreus) bioenergetics model. Fish Physiol Biochem 39:749–754

    Article  CAS  Google Scholar 

  • Madenjian CP, Carpenter SR, Eck GW, Miller MA (1993) Accumulation of PCBs by lake trout (Salvelinus namaycush): an individual-based model approach. Can J Fish Aquat Sci 50:97–109

    Article  CAS  Google Scholar 

  • Madenjian CP, Noguchi GE, Haas RC, Schrouder KS (1998) Sexual difference in polychlorinated biphenyl accumulation rates of walleye (Stizostedion vitreum). Can J Fish Aquat Sci 55:1085–1092

    Article  CAS  Google Scholar 

  • Madenjian CP, O’Connor DV, Nortrup DA (2000) A new approach toward evaluation of fish bioenergetics models. Can J Fish Aquat Sci 57:1025–1032

    Article  Google Scholar 

  • Madenjian CP, O’Connor DV, Chernyak SM, Rediske RR, O’Keefe JP (2004) Evaluation of a chinook salmon (Oncorhynchus tshawytscha) bioenergetics model. Can J Fish Aquat Sci 61:627–635

    Article  Google Scholar 

  • Madenjian CP, Hanchin PA, Chernyak SM, Begnoche LJ (2009) Sexual difference in PCB concentrations of walleyes (Sander vitreus) from a pristine lake. Sci Total Environ 407:4526–4532

    Article  CAS  Google Scholar 

  • Madenjian CP, Wang C, O’Brien TP, Holuszko MJ, Ogilvie LM, Stickel RG (2010) Laboratory evaluation of a walleye (Sander vitreus) bioenergetics model. Fish Physiol Biochem 36:45–53

    Article  CAS  Google Scholar 

  • Madenjian CP, David SR, Krabbenhoft DP (2012a) Trophic transfer efficiency of methylmercury and inorganic mercury to lake trout Salvelinus namaycush from its prey. Arch Environ Contam Toxicol 63:262–269

    Article  CAS  Google Scholar 

  • Madenjian CP, David SR, Pothoven SA (2012b) Effects of activity and energy budget balancing algorithm on laboratory performance of a fish bioenergetics model. Trans Am Fish Soc 141:1328–1337

    Article  Google Scholar 

  • Madenjian CP, Trombka AW, Rediske RR, Jude DJ, O’Keefe JP (2012c) Sex difference in polybrominated diphenyl ether concentrations of walleyes. J Great Lakes Res 38:167–175

    Article  CAS  Google Scholar 

  • Madenjian CP, Pothoven SA, Kao Y-C (2013) Reevaluation of lake trout and lake whitefish bioenergetics models. J Great Lakes Res 39:358–364

    Article  Google Scholar 

  • Madon SP, Culver DA (1993) Bioenergetics model for larval and juvenile walleyes: an in situ approach with experimental ponds. Trans Am Fish Soc 122:797–813

    Article  Google Scholar 

  • Ney JJ (1993) Bioenergetics modeling today: growing pains on the cutting edge. Trans Am Fish Soc 122:736–748

    Article  Google Scholar 

  • Nisbet RM, Jusup M, Klanjscek T, Pecquerie L (2012) Integrating dynamic energy budget (DEB) theory with traditional bioenergetics models. J Exp Biol 215:892–902

    Article  Google Scholar 

  • Pauly D, Christensen V, Walters C (2000) Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J Mar Sci 57:697–706

    Article  Google Scholar 

  • Persson L (1979) The effects of temperature and different food organisms on the rate of gastric evacuation in perch (Perca fluviatilis). Freshw Biol 9:99–104

    Article  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Phillipson J (1966) Ecological energetics. Edward Arnold, London

    Google Scholar 

  • Post JR (1990) Metabolic allometry of larval and juvenile yellow perch (Perca flavescens): in situ estimates and bioenergetics models. Can J Fish Aquat Sci 47:554–560

    Article  Google Scholar 

  • Ricker WE (1975) Computation and interpretation of biological statistics of fish populations. Fish Res Board Can Bull 191

    Google Scholar 

  • Schaeffer JS, Haas RC, Diana JS, Breck JE (1999) Field test of two energetic models for yellow perch. Trans Am Fish Soc 128:414–435

    Article  Google Scholar 

  • Solomon DJ, Brafield AE (1972) The energetics of feeding, metabolism and growth of perch (Perca fluviatilis L.). J Anim Ecol 41:699–718

    Article  Google Scholar 

  • Stewart DJ (1980) Salmonid predators and their forage base in Lake Michigan: a bioenergetics-modeling synthesis. Dissertation, University of Wisconsin

    Google Scholar 

  • Stewart DJ, Kitchell JF, Crowder LB (1981) Forage fishes and their salmonid predators in Lake Michigan. Trans Am Fish Soc 110:751–763

    Article  Google Scholar 

  • Stewart DJ, Weininger D, Rottiers DV, Edsall TA (1983) An energetics model for lake trout, Salvelinus namaycush: application to the Lake Michigan population. Can J Fish Aquat Sci 40:681–698

    Article  Google Scholar 

  • Swenson WA, Smith LL Jr (1973) Gastric digestion, food consumption, feeding periodicity, and food conversion efficiency in walleye (Stizostedion vitreum vitreum). J Fish Res Board Can 30:1327–1336

    Article  Google Scholar 

  • Trudel M, Tremblay A, Schetagne R, Rasmussen JB (2000) Estimating food consumption rates of fish using a mercury mass balance model. Can J Fish Aquat Sci 57:414–428

    Article  Google Scholar 

  • Van Walleghem JLA, Blanchfield PJ, Hintelmann H (2007) Elimination of mercury by yellow perch in the wild. Environ Sci Technol 41:5895–5901

    Article  Google Scholar 

  • Weininger D (1978) Accumulation of PCBs by lake trout in Lake Michigan. Dissertation, University of Wisconsin

    Google Scholar 

  • Whitledge GA, Hayward RS (1997) Laboratory evaluation of a bioenergetics model for largemouth bass at two temperatures and feeding levels. Trans Am Fish Soc 126:1030–1035

    Article  Google Scholar 

  • Winberg GG (1960) Rate of metabolism and food requirements of fishes. Fish Res Board Can Transl Ser 194

    Google Scholar 

  • Worischka S, Mehner T (1998) Comparison of field-based and indirect estimates of daily food consumption in larval perch and zander. J Fish Biol 53:1050–1059

    Article  Google Scholar 

Download references

Acknowledgments

I thank Patrick Kestemont and Konrad Dabrowski for encouraging me to prepare this chapter for their book on percid biology and culture. I also thank Jim Kitchell, Steve Hewett, and Jim Breck for sharing their knowledge of fish bioenergetics modeling with me. Patrick Hanchin, Jason Ross, and an anonymous reviewer provided helpful comments for improvement of the manuscript, and Rich Quintal prepared the figure. This article is Contribution 1868 of the U. S. Geological Survey Great Lakes Science Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles P. Madenjian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Madenjian, C.P. (2015). Bioenergetics Modeling of Percid Fishes. In: Kestemont, P., Dabrowski, K., Summerfelt, R. (eds) Biology and Culture of Percid Fishes. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7227-3_14

Download citation

Publish with us

Policies and ethics