Skip to main content

Effect of Nutrient Enrichment on Metal Accumulation and Biological Responses of Duckweed (Lemnaceae) Spread in Turkey

  • Chapter
Plants, Pollutants and Remediation
  • 1206 Accesses

Abstract

Wetlands have been proposed as sites for the phytoremediation of metals. The fate of metals within plant tissues is a critical issue for the effectiveness of this process. This study was intended to test the hypothesis that nutrient enrichment (P, NO3 -N and SO4 2−) enhances the metal tolerance and biological responses of floating macrophytes. To test this hypothesis, duckweed species which spread in Turkey (Lemna minor L., Lemna gibba L., Lemna trisulca L., Lemna turionifera Landolt and Spirodela polyrhiza (L.) Schleid.) were exposed to heavy metals (Pb, Ni, Cd) in the absence and presence of nutrients for 7 days under laboratory conditions. Metal accumulation, relative growth rates (RGR) and photosynthetic pigments (chlorophyll a) were measured. It was determined that metal and nutrient concentration in water decreased throughout the experiments. The highest Pb accumulation was seen at a dose of 50 mg l−1 in L. gibba (22,596 μg g−1), after 7 days. Relative growth rates were negatively correlated with metal exposure, but nutrient addition was found to suppress this effect. Photosynthetic pigment level was found to be negatively correlated with metal exposure, and nutrient addition attenuated chlorophyll decrease in response to metal exposure. Levels of chl a decreased in a Pb concentration-dependent and time-dependent manner, with a minimum value of 0.386 mg g−1 in the 50 mg l−1 on L. gibba. The study concluded that nutrient enrichment increases the tolerance of duckweeds to metals. However, it was determined that nutrient enrichment decreased metal accumulation at 5 mg l−1 nutrient addition. Our finding may be useful for the phytoremediation of water polluted with heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Appenroth KJ, Luther A, Jetschke G et al (2008) Modification of chromate toxicity by sulphate in duckweeds (Lemnaceae). Aquat Toxicol 89:167–171

    Article  CAS  PubMed  Google Scholar 

  • Axtell NR, Stenberg PK, Claussen K (2003) Lead and nickel removal using Microspora and L. minor. Bioresour Technol 89:41–48

    Article  CAS  PubMed  Google Scholar 

  • Bianconi D, Pietrini F, Massacci A et al. (2013) Uptake of cadmium by Lemna minor, a (hyper?-) accumulator plant involved in phytoremediation applications E3S web of conferences. In: Proceedings of the 16th international conference on heavymetals in the environment, vol 1, p 4

    Google Scholar 

  • Burken JG, Schnoor JL (1999) Distribution and volatilisation of organic compounds following uptake by hybrid poplar trees. Int J Phytoremediation 1:139–151

    Article  CAS  Google Scholar 

  • Chang YY, Corapcioglu MY (1998) Plant-enhanced subsurface bioremediation of nonvolatile hydrocarbons. J Environ Eng 124:162–169

    Article  CAS  Google Scholar 

  • Charpentier S, Garbier J, Flaugnatti R (1987) Toxicity and bioaccumulation of cadmium in experimental cultures of duckweed Lemna minor L. Bull Environ Contam Toxicol 38:1055–1061

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary E, Sharma P (2014) Assessment of heavy metal removal efficiency of Lemna minor. Int J Innov Res Dev 3:176–178

    Google Scholar 

  • Chaudhuri D, Majumder A, Misra AK et al (2014) Cadmium removal by Lemna minor and Spirodelapolyrhiza. Int J Phytoremediation 16:1119–1132

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Landesman L, Bergmann BA et al (2002) Nutrient removal from swine lagoon liquid by Lemna minor 8627. Trans ASAE 45:1003–1010

    Google Scholar 

  • Cossu R, Haarstad K, Lavagnolo MC et al (2002) Removal of municipal solid waste COD and NH4-N by phytoreduction: a laboratory-scale comparison of terrestrial and aquatic species at different organic loads. Ecol Eng 16:459–470

    Article  Google Scholar 

  • DIN (2000) Duckweed growth inhibition test: determination of non-poisonous effect of water constituent and waste water to duckweed (Lemna minor, Lemnagibba). DeutschesInstitutfürNormunge.v. DurchBeuthVerlag, Berlin

    Google Scholar 

  • Duman F, Leblebici Z, Aksoy A (2009) Bioaccumulation of nickel, copper, and cadmium by Spirodelapolyrhiza and Lemnagibba. J Fresh Ecol 24:177–179

    Article  CAS  Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto H et al (1995) Rhizofiltration- the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  CAS  PubMed  Google Scholar 

  • EPA (1996) Aquatic plant toxicity test using Lemna spp.: tiers I and II-OPPTS 850.4400. United States Environmental Protection Agency Prevention, Pesticides and Toxic Substances Unit, New York

    Google Scholar 

  • Frankart C, Eullaffroy P, Vernet G (2002) Photosynthetic responses of Lemna minor exposed to xenobiotics, copper and their combinations. Ecotoxicol Environ Saf 53:439–445

    Article  CAS  PubMed  Google Scholar 

  • Göthberg A, Greger M, Holm K et al (2004) Influence of nutrient levels on uptake and effects of mercury, cadmium and lead in water spinach. J Environ Qual 33:1247–1255

    Article  PubMed  Google Scholar 

  • Goulet RR, Lalonde JD, Munger C et al (2005) Phytoremediation of effluents from aluminum smelters: a study of Al retention in mesocosms containing aquatic plants. Water Res 39:2291–2300

    Article  CAS  PubMed  Google Scholar 

  • Hadad HR, Maine MA, Natale GS et al (2007) The effect of nutrient addition on metal tolerance in Salvinia herzogii. Ecol Eng 31:122–131

    Article  Google Scholar 

  • Hakeem KR, Sabir M, Ozturk M, Mermut A (2015) Soil remediation and plants: prospects and challenges. Academic/Elsevier, New York, p 724

    Google Scholar 

  • Halaimi FZ, Kellali Y, Couderchet M et al (2014) Comparison of biosorption and phytoremediation of cadmium and methylparathion, a case-study with live Lemnagibba and Lemnagibba powder. Ecotoxicol Environ Saf 105:112–120

    Article  CAS  PubMed  Google Scholar 

  • Hume NP, Fleming MS, Horne AJ (2002) Denitrification potential and carbon quality of four aquatic plants in wetland microcosms. Soil Sci Soc Am J 66:1706–1712

    Article  CAS  Google Scholar 

  • Hunt R (1978) Plant growth analysis. Studies in biology. Edward Arnold Ltd, London

    Google Scholar 

  • ISO (2001) Water quality – determination of the toxic effect of water constituents and waste water to duckweed (Lemna minor) – Duckweed growth inhibition test. ISO TC 147/Sc 5 N, International Organisation for Standardisation, Geneva

    Google Scholar 

  • Kinnear PR, Gray CD (1994) SPSS for windows made simple. Lawrence Erlbaum Associates, Mahwah

    Google Scholar 

  • Koles SM, Petrell RJ, Bagnall LO (1987) Duckweed culture for reduction of ammonia, phosphorus and suspended solids from algal-rich water. In: Reddy KR, Smith WH (eds) Aquatic plants for water treatment and resource recovery. Magnolia Publishing, Orlando

    Google Scholar 

  • Körner S, Lyatuu GB, Vermaat JE (1998) The influence of Lemnagibba L. on the degradation of organic material in duckweed-covered domestic wastewaters. Water Res 23:3092–3098

    Article  Google Scholar 

  • Körner S, Das SK, Veenstra S et al (2003) The capacity of duckweed to treat wastewater: ecological considerations for a sound design. J Environ Qual 32:1583–1590

    Article  PubMed  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H et al (1995) Phytoextraction- the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Lahive E, Halloran JO, Jansen MAK (2012) Frond development gradients are a determinant of the impact of zinc on photosynthesis in three species of Lemnaceae. Aquat Bot 101:55–63

    Article  Google Scholar 

  • Landesman L (2000) Effects of herbivory and competition on growth of Lemnaceae in systems for wastewater treatment and livestock feed production. University of Louisiana at Lafayette, Loisiana

    Google Scholar 

  • Landolt E (1982) Distribution patterns within the family Lemnaceae. In: Symoens JJ, Hooper SS, Compere P (eds) Studies on aquatic vascular plants. Royal Botanic Society of Belgium, Brussels

    Google Scholar 

  • Landolt E (ed) (1986) The family of Lemnaceae: a monographic study (Vol I). Biosystematic investigation in the family of Duckweeds. Geobotanischen Institutes, StiftungRübel, Zürich

    Google Scholar 

  • Landolt E, Kandeler R (eds) (1987) The family Lemnaceae: a monographic study (Vol 2). Phytochemistry, physiology, application, bibliography. StiftungRübel, Zürich

    Google Scholar 

  • Leblebici Z, Aksoy A (2011) Growth and heavy metal accumulation capacity of Lemna minor and Spirodelapolyrhiza (Lemnaceae): interactions with nutrient enrichment. Water Air Soil Pollut 214:175–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leblebici Z, Aksoy A, Duman F (2010) Influence of nutrient addition on growth and accumulation of cadmium and copper in Lemnagibba. Chem Speciat Bioavailab 22:157–164

    Article  CAS  Google Scholar 

  • Leblebici Z, Aksoy A, Duman F (2011) Influence of salinity on the growth and heavy metal accumulation capacity of Spirodelapolyrhiza(Lemnaceae). Turk J Biol 35:215–220

    CAS  Google Scholar 

  • Les DH, Landolt E, Crawford DJ (1997) Systematics of the Lemnaceae (duckweeds): inferences from micromolecular and morphological data. Syst Evol 204:161–177

    Article  Google Scholar 

  • Mal TK, Adorjan AL, Corbertt AL (2002) Effect of copper on growth of an aquatic macrophytes Elodea canadensis. Environ Pollut 120:307–311

    Article  CAS  PubMed  Google Scholar 

  • Miranda MG, Ilangovan K (1996) Uptake of lead by Lemnagibba L.: influence on specific growth rate and basic biochemical changes. Bull Environ Contam Toxicol 56:1000–1007

    Article  CAS  PubMed  Google Scholar 

  • Miretzky P, Saralegui A, Cirelli AF (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57:997–1005

    Article  CAS  PubMed  Google Scholar 

  • Mkandawire M, Dudel EG (2005) Accumulation of arsenic in Lemnagibba L. (duckweed) in tailing water of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ 336:81–89

    Article  CAS  PubMed  Google Scholar 

  • Mkandawire M, Dudel EG (2007) Are Lemna spp. effective phytoremediation agents? Bioremediation, biodiversity and bioavailability. Glob Sci Books 1:56–71

    Google Scholar 

  • Mkandawire M, Taubert B, Dudel EG (2004a) Capacity of Lemnagibba L. (duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Int J Phytorem 6:347–362

    Article  CAS  Google Scholar 

  • Mkandawire M, Lyubun YV, Kosterin PV et al (2004b) Toxicity of arsenic species to Lemnagibba L. and the influence of phosphate on arsenic bioavailability. Environ Toxicol 19:26–35

    Article  CAS  PubMed  Google Scholar 

  • OECD (2002) OECD guidelines for the testing of chemicals: Lemna sp. Growth inhibition test. Organisation for Economic Corporation and Development, Berlin

    Google Scholar 

  • Rahman MA, Hasegawa H, Ueda K et al (2007) Arsenic accumulation in duckweed (Spirodelapolyrhiza L.): a good option for phytoremediation. Chemosphere 69:493–499

    Article  CAS  PubMed  Google Scholar 

  • Rahman MA, Hasegawa H, Ueda K et al (2008) Arsenic uptake by aquatic macrophyte Spirodelapolyrhiza L.: interactions with phosphate and iron. J Hazard Mater 160:356–361

    Article  CAS  PubMed  Google Scholar 

  • Rai UN, Tripathi RD, Vajpayee P et al (2002) Bioaccumulation of toxic metals (Cr, Cd, Pb and Cu) by seeds of Euryale ferox Salisb (Makhana). Chemosphere 46:267–272

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA et al (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  CAS  PubMed  Google Scholar 

  • Sandmann G, Boger P (1980) Copper-mediated lipid peroxidation processes in photosynthetic membranes. Plant Physiol 66:797–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasmaz A, Obek E (2012) The accumulation of silver and gold in Lemnagibba L. exposed to secondary effluents. ChemErde Geochem 72:149–152

    Article  CAS  Google Scholar 

  • Sekomo CB, Rousseau DPL, Saleh SA et al (2012) Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment. Ecol Eng 44:102–110

    Article  Google Scholar 

  • Sharma SS, Gaur JP (1994) Potential of Lemnapolyrrhiza of removal of heavy metals. Ecol Eng 4:37–43

    Article  Google Scholar 

  • Smith MD, Moelyowati I (2001) Duckweed based wastewater treatment (DWWT): design guidelines for hot climates. Water Sci Technol 43:291–299

    CAS  PubMed  Google Scholar 

  • Sooknah RD, Wilkie AC (2004) Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol Eng 22:27–42

    Article  Google Scholar 

  • Steveninck RFM, Steveninck ME, Fernando DR (1992) Heavy-metal (Zn, Cd) tolerance in selected clones of duckweed (Lemna minor). Plant and Soil 146:271–280

    Article  Google Scholar 

  • Stout LM, Nusslein K (2005) Shifts in rhizoplane communities of aquatic plants after cadmium exposure. Appl Environ Microbiol 71:2484–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  • Szabo SL, Braun M, Borics G (1999) Elemental flux between algae and duckweed (Lemnagibba) during competition. ArchivfürHydrobiologie 146:355–367

    CAS  Google Scholar 

  • Vatta G, Rota R, Boniardi N et al (1995) Dynamic modelling of treatment plants based on Lemnagibba. Chem Eng J Biochem Eng J 57:37–48

    Article  Google Scholar 

  • VavilinDV PVA, Matorin DN et al (1995) Sublethal concentration of copper stimulates photosystem II photoinhibition in Chlorella pyrenoidosa. J Plant Physiol 146:609–614

    Article  Google Scholar 

  • Vymazal J (ed) (2005) Natural and constructed Wetlands: nutrient, metal and management. Backhuys Publishers, Prague

    Google Scholar 

  • Wang Q, Cui Y, Dong Y (2002) Phytoremediation of polluted waters potentials and prospects of wetland plants. Acta Biotechnol 22:199–208

    Article  CAS  Google Scholar 

  • Witham FH, Blaydes DF, Deulin RM (1971) Experiments in plant physiology. Van Nostrand Reinhold Company, New York

    Google Scholar 

  • Zayed A, Gowthaman S, Terry N (1998) Phyoaccumulation of traces elements by Wetland plants: I. Duckweed. J Environ Qual 27:715–721

    Article  CAS  Google Scholar 

  • Zhang X, Hu Y, Liu Y et al (2011) Arsenic uptake, accumulation and phytofiltration by duckweed(Spirodela polyrhiza L.). J Environ Sci 23:601–606

    Article  CAS  Google Scholar 

  • Zimmo OR, Van der Sten NP, Gijzen HJ (2004) Nitrogen mass balance across pilot-scale algae and duckweed-based wastewater stabilisation ponds. Water Res 38:913–920

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeliha Leblebici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aksoy, A., Leblebici, Z. (2015). Effect of Nutrient Enrichment on Metal Accumulation and Biological Responses of Duckweed (Lemnaceae) Spread in Turkey. In: Öztürk, M., Ashraf, M., Aksoy, A., Ahmad, M., Hakeem, K. (eds) Plants, Pollutants and Remediation. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7194-8_14

Download citation

Publish with us

Policies and ethics