Skip to main content

Tracking metabolism and imaging transport in arbuscular mycorrhizal fungi

Metabolism and transport in AM fungi

  • Chapter
Diversity and Integration in Mycorrhizas

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 94))

Abstract

In the last few years the application of modern techniques to the study of arbuscular mycorrhizas has greatly increased our understanding of the mechanisms underlying carbon metabolism in these mutualistic symbioses. Arbuscular mycorrhizal (AM) monoxenic cultures, nuclear magnetic resonance spectroscopy together with isotopic labeling, and analyses of expressed sequence tags (ESTs) have shed light on the metabolic processes taking place in these interactions, particularly in the case of the mycobiont. More recently, in vivo multiphoton microscopy has provided us with some new insights in the allocation and translocation processes which play crucial roles in the distribution of host plant-derived C throughout the fungal colony. In this mini-review we highlight recent advances in these fields, with special attention to the visualization of oleosomes (i.e., lipid bodies) as they move along the long, coenocytic AM fungal hyphae. Volumetric measurements of such oleosomes have allowed us to estimate the flux of triacylglycerides from the intraradical to the extraradical phase of the AM fungal colony. We raise questions and postulate regulatory mechanisms for C metabolism and translocation within the arbuscular mycorrhizal fungal colony.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aström H, Giovannetti M and Raudaskoski M 1994 Cytoskeletal components in the arbuscular mycorrhizal fungus Glonms mosseae. MPMI 7, 309–312.

    Article  Google Scholar 

  • Bago, B 2000 Putative sites for nutrient uptake in arbuscular mycorrhizal fungi. Plant Soil 226, 263–274.

    Article  CAS  Google Scholar 

  • Bago B, AzcOn-Aguilar C and Piché Y 1998a Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown under monoxenic conditions. Mycologia 90, 52–62.

    Article  Google Scholar 

  • Bago B, Azcdn-Aguilar C, Goulet A and Piché Y 1998b Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytol. 139, 375–388.

    Article  Google Scholar 

  • Bago B, Zipfel W, Williams RC and Fiché Y I999a Nuclei of symbiotic arbuscular mycorrhizal fungi as revealed by in vivo two-photon microscopy. Protoplasma 209, 77–89.

    Google Scholar 

  • Bago B, Pfeffer PE, Douds DD Jr, Brouillette J, Bécard G and Shachar-Hill Y 1999b Carbon metabolism in arbuscular mycorrhizal spores as revealed by NMR spectroscopy. Plant Physiol. 121, 263–271.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bago B, Zipfel W, Williams RC, Chamberland H, Lafontaine J-G, Webb WW and Piché Y 1998e In vivo studies on the nuclear behavior of the arbuscular mycorrhizal fungus Gigaspora ro.seo grown under axenic conditions. Protoplasma 203,1–15.

    Google Scholar 

  • Bago B, Pfeffer PE and Shachar-Hill Y 2000 Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol. 124,949— 957.

    Google Scholar 

  • Bago B, Pfeffer PE and Shachar-Hill Y 2001 Could the urea cycle be translocating nitrogen in arbuscular mycorrhizal fungi? New Phytol. 149, 4–8.

    Article  CAS  Google Scholar 

  • Bago B, Zipfel W, Williams RC, Jun J, Arreola R, Pfeffer PE, Lammers PJ and Shachar-Hill Y 2002 Translocation and utilization of fungal lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128, 108–124.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Balestrini R, Bianciotto V and Bonfante-Fasolo P 1992 Nuclear architecture and DNA location in two VAM fungi. Mycorrhiza I, 105–112.

    Google Scholar 

  • Bécard G and Fortin A 1988 Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol. 108, 21 1–218.

    Google Scholar 

  • Beilby JP 1983 Effects of inhibitors on early protein, RNA, and lipid synthesis in germinating vesicular-arbuscular mycorrhizal fungal spores of Glomus caledonium. Can. J. Bot. 29, 596–601.

    CAS  Google Scholar 

  • Beilby JP and Kidby DK 1980 Biochemistry of ungerminated and germinated spores of the vesicular-arhuscular mycorrhizal fungus Glomus caledonium: changes in neutral and polar lipids. J. Lipid Res. 21, 739–750.

    PubMed  CAS  Google Scholar 

  • Burleigh S H and Ellegaard Bechman I 2002 Plant nutrient transporter regulation in arbuscular mycorrhiza. Plant Soil 244, 247–251.

    Article  CAS  Google Scholar 

  • Bütehorn B, Gianinazzi-Pearson V and Franken P 1999 Quantification of beta-tubulin RNA expression during asymbiotic and symbiotic development of the arbuscular mycorrhizal fungus Glomus mosseae. Mycol. Res. 103, 360–364.

    Google Scholar 

  • Cooper KM and Lösel DM 1978 Lipid physiology of vesicular arbuscular mycorrhiza. New Phytol. 80, 143–151.

    Article  CAS  Google Scholar 

  • Denk W, Strickler JH and Webb WW 1990 Two-photon laser scanning fluorescence microscopy. Science 248. 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Denk W, Piston DN and Webb WW 1995 Two-photon molecular excitation in laser scanning fluorescence microscopy. In Handbook of Biological Confocal Microscopy. Ed. JB Pawley. pp 445–458. Plenum Pres, New York.

    Chapter  Google Scholar 

  • Ferrol N, Barea J M and Azcon-Aguilar 2002 Mechanisms of nutrient transport across interfaces in arbuscular mycorrhizas. Plant Soil 244, 231–237.

    Article  CAS  Google Scholar 

  • Friese CF and MF Allen 1991 The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83, 409–418.

    Article  Google Scholar 

  • Gaspar ML, Pollero Ri and Cabello MN 1994 Triacylglycerol consumption during spore germination of vesicular-arbuscular mycorrhizal fungi. JAOCS 71, 449–452.

    CAS  Google Scholar 

  • Gaspar L, Pollero R and Cabello M 1997 Partial purification and characterization of a lipolytic enzyme from spores of the arbuscular mycorrhizal fungus Glomus versifonne. Mycologia 89, 610–614.

    Article  CAS  Google Scholar 

  • George E, Marschner H and Jakobsen 11995 Role of arbuscularmycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit. Rev. Biotechnol. 15, 257–270.

    Google Scholar 

  • Gianinazzi-Pearson V, Smith SE, Gianinazzi S and Smith FA 1991 Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. V. Is H+-ATPase a component of ATP-hydrolysing enzyme activities in plant-fungus interfaces’? New Phytol. 117, 61–74.

    Article  CAS  Google Scholar 

  • Gow NAR and Gadd GM 1984 The Growing Fungus. Chapman, and Hall, London, UK. 472 pp.

    Google Scholar 

  • Greenspan P, Mayer EP and Fowler SD 1985 Nile Red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100, 965–973.

    Article  PubMed  CAS  Google Scholar 

  • Harrier LA, Wright F and Hooker JE 1998 Isolation of the 3phosphoglycerate kinase gene of the arbuscular mycorrhizal fungus Glomus mosseae (Nicol., and Gerd.) Gerdemann, and Trappe. Curr. Genet. 34, 386–392.

    Google Scholar 

  • Ho I, Trappe JM 1973 Translocation of 14C from Fe.stuca plants to their endomycorrhizal fungi. Nature 244, 30–31.

    CAS  Google Scholar 

  • Jabaji-Hare S 1988 Lipid and fatty acid profiles of some vesiculararbuscular mycorrhizal fungi: contribution to taxonomy. Mycologia 80, 622–629.

    Article  CAS  Google Scholar 

  • Jakobsen 11999 Transport of phosphorus and carbon in VA mycorrhizas. In Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology, 2nd Edition. Eds. A Varma, B Hock. pp. 305–332. Springer, Berlin.

    Google Scholar 

  • Jennings DH 1995 The Physiology of Fungal Nutrition. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Jun J, Abubaker J, Rehrcr C, Pfeffer P E, Schachar-Hill Y and Lammers P J 2002 Expression in an arbuscular mycorrhizal fungus of genes putatively involved in metabolism, transport, the cyto skeleton and the cell cycle. Plant Soil 244, 141–148.

    Article  CAS  Google Scholar 

  • Koide RT and Schreiner RP 1992 Regulation of the vesiculararbuscular mycorrhizal symbiosis. Annu. Rev. Plant. Physiol. Mol. Biol. 43, 557–581.

    Article  CAS  Google Scholar 

  • Lammers P, Jun J, Abubaker J, Arreola R, Gopalan A, Bago B, Hernandez C, Allen J, Douds DD, Pfeffer PE and Shachar-Hill Y 2001 Gene expression and glyoxylate cycle activity during of an arbuscular mycorrhizal fungus. Plant Physiol. 127, 1287–1298.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lösel DM and Cooper KM 1979 Incorporation of 14C-labelled substrates by uninfected and VA mycorrhizal roots of onions. New Phytol. 834.

    Google Scholar 

  • Martin F, Canet D and Marchai P 1985 13C NMR study of the mannitol cycle and trehalose synthesis during glucose utilization by ectomycorrhizal ascomycete Cenococcum graniforme. Plant Physiol. 77, 449–502.

    Google Scholar 

  • Martin F. Boiffin V and Pfeffer PE 1998 Carbohydrate and amino acid metabolism in the Eucalyptus glohulus—Pisolithus tinctorius ectomycorrhiza during glucose utilization. Plant Physiol. 118, 627–635.

    Article  PubMed  PubMed Central  Google Scholar 

  • MacDonald RM and Lewis M 1978 The occurrence of some acid phosphatases and dehydrogenases in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. New Phytol. 80, 135–141.

    Article  CAS  Google Scholar 

  • Murphy DJ 1991 Storage lipid bodies in plants and other organisms. Prog. Lipid Res. 29, 299–324.

    Google Scholar 

  • Nagy S, Nordby HE and Nemec S 1980 Composition of lipids in roots of six citrus cultivars infected with the vesicular-arhuscular mycorrhizal fungus Glomus mosseae. New Phytol. 85, 377–382.

    Article  CAS  Google Scholar 

  • Pfeffer PE and Shachar-Hill Y 1996 Plant/microbe symbioses. In Nuclear Magnetic Resonance in Plant Biology. Eds. Y ShacharHill and PE Pfeffer. pp. 77–107. APS Press, Rockville, MD.

    Google Scholar 

  • Pfeffer PE, Douds DD, Bécard G and Shachar-Hill Y 1999 Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol. 120, 587–598.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pfeffer PE, Bago B and Shachar-Hill Y 2001 Exploring mycorrhizal function with NMR spectroscopy. New Phytol. 150, 548–554.

    Google Scholar 

  • Requena N, Mann P and Franken P 2000 A homologue of the cell cycle check point TOR2 from Saccharomyces cerevisiae exists in the arbuscular mycorrrhizal fungus Glomus mosseae. Protoplasma 212, 89–98.

    Article  CAS  Google Scholar 

  • Saito M 1995 Enzyme activities of the internal hyphae and germinated spores of an arbuscular mycorrhizal fungus, Gigaspora margarita Becker, and Hall. New Phytol. 129, 425–431.

    Article  CAS  Google Scholar 

  • Séjalon-Delmas N, Rogister I, Jauneau A, Roux C and Bécard G 2001 Carbon uptake during symbiotic, asymbiotic and presymbiotic stages of the AM fungus Glomus intraradices. Proceedings of ICOM3, Adelaide, p. P2 137.

    Google Scholar 

  • Shachar-Hill Y, Pfeffer PE. Douds D, Osman SF, Doner LW and Ratcliffe RG 1995 Partitioning of intermediate carbon metabolism in VAM colonized leek. Plant Physiol. 108,7–15.

    Google Scholar 

  • Smith SE, Read DJ 1997 Mycorrhizal Symbiosis. Academic Press, London. 605 pp.

    Google Scholar 

  • Smith SE and Smith FA 1990 Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol. 114, 1–38.

    Article  CAS  Google Scholar 

  • Smith FA and Smith SE 1997 Structural diversity in (vesicular)- arbuscular mycorrhizal symbioses. New Phytol. 137, 373–388.

    Article  Google Scholar 

  • Solaiman MD and Saito M 1997 Use of sugars by intraradical hyphae of arbuscular mycorrhiza] fungi revealed by radiorespirometry. New Phytol. 136, 533–538.

    Article  CAS  Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M and Fortin JA 1996 Enhanced hyphal growth and spore production of the arbuscular rnycorrhizal fungus G. intraradices in an in vitro system in the absence of host roots. Mycol. Res. 100, 328–332.

    Google Scholar 

  • Timonen S, Smith FA and Smith SE 2001 Microtubules of mycorrhizal fungus Glomus intraradices in symbiosis with tomato roots. Can. J. Bot. 79, 307–313.

    Google Scholar 

  • Williams RM, Piston DW and Webb WW 1994 Two-photon molecular excitation provides intrinsic 3–dimensional resolution for laser-based microscopy and microphotochemistry. FASEB J. 8, 804–813.

    PubMed  CAS  Google Scholar 

  • Xu C and Webb WW 1996 Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. (B) 13, 481–491.

    Article  CAS  Google Scholar 

  • Xu C, Zipfel W, Shear JB, Williams RM and Webb WW 1996 Multiphoton fluorescence excitation: New spectral windows for biological non-linear microscopy. Proc. Natl. Acad. Sei. USA 93. 10763–10768.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bago, B., Pfeffer, P.E., Zipfel, W., Lammers, P., Shachar-Hill, Y. (2002). Tracking metabolism and imaging transport in arbuscular mycorrhizal fungi. In: Smith, S.E., Smith, F.A. (eds) Diversity and Integration in Mycorrhizas. Developments in Plant and Soil Sciences, vol 94. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1284-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1284-2_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5933-8

  • Online ISBN: 978-94-017-1284-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics