Skip to main content

Part of the book series: Encyclopaedia of Mathematics ((ENMA,volume 7))

  • 591 Accesses

Abstract

Orbit of a point x relative to a group G acting on a set X (on the left) — The set

$$ G\left( x \right) = \left\{ {g\left( x \right):g \in G} \right\}. $$

The set

$$ G_x = \left\{ {g \in G:g\left( x \right) = x} \right\}. $$

is a subgroup in G and is called the stabilizer or stationary subgroup of the point x relative to G. The mapping g↦g(x), gG, induces a bijection between G/G x and the orbit G(x). The orbits of any two points from X either do not intersect or coincide; in other words, the orbits define a partition of the set X. The quotient by the equivalence relation defined by this partition is called the orbit space of X by G and is denoted by X/G. By assigning to each point its orbit, one defines a canonical mapping π X,G : XX/G. The stabilizers of the points from one orbit are conjugate in G, or, more precisely, G g (x)= g G x g 1. If there is only one orbit in X, then X is a homogeneous space of the group G and G is also said to act transitively on X. If G is a topological group, X is a topological space and the action is continuous, then X/G is usually given the topology in which a set UX/G is open in X/G if and only if the set μ X,G -1(U) is open in X.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Palais, R.: The classification of G-spaces, Amer. Math. Soc., 1960.

    Google Scholar 

  2. Harary, F.: Graph theory, Addison-Wesley, 1969.

    Google Scholar 

  3. Luna, D.: ‘Slices étales’, Bull. Soc. Math. France. 33 (1973), 81–105.

    Google Scholar 

  4. Luna, D.: ‘Adhérence d’orbite et invariants’, Invent. Math. 29, no. 3 (1975), 231–238.

    MathSciNet  MATH  Google Scholar 

  5. Borel, A.: Linear algebraic groups, Benjamin, 1969.

    Google Scholar 

  6. Steinberg, R.: Conjugacy classes in algebraic groups, Lecture notes in math., 366, Springer, 1974.

    Google Scholar 

  7. Popov, V.L.: ‘Stability criteria for the action of a semisimple group on a factorial manifold’, Math. USSR Izv. 4 (1970), 527–535. (Izv. Akad. Nauk. SSSR Ser. Mat. 34 (1970), 523-531)

    MATH  Google Scholar 

  8. Popov, A.M.: ‘Irreducible semisimple linear Lie groups with finite stationary subgroups of general position’, Funct. Anal. Appl. 12, no. 2 (1978), 154–155. (Funkts. Anal. i Prilozhen. 12, no. 2 (1978), 91-92)

    MATH  Google Scholar 

  9. Elashvili, A.G.: ‘Stationary subalgebras of points of the common state for irreducible Lie groups’, Funct. Anal. Appl. 6, no. 2 (1972), 139–148. (Funkts. Anal, i Prilozhen. 6, no. 2 (1972), 65-78)

    MATH  Google Scholar 

  10. Mumford, D. and Fogarty, J.: Geometric invariant theory, Springer, 1982.

    Google Scholar 

  11. Kostant, B.: ‘Lie group representations on polynomial rings’, Amer. J. Math. 85, no. 3 (1963), 327–404.

    MathSciNet  MATH  Google Scholar 

  12. Humphreys, J.: Linear algebraic groups, Springer, 1975.

    Google Scholar 

  13. Popov, V.L.: ‘Modern developments in invariant theory’, in Proc. Internat. Congress Mathematicians Berkeley, 1986, Amer. Math. Soc, 1988, pp. 394-406.

    Google Scholar 

  14. Kraft, H.: Geometrische Methoden in der Invariantentheorie, Vieweg, 1984.

    Google Scholar 

  15. Kraft, H., Slodowy, P. and Springer, T.A. (eds.): Algebraische Transformationsgruppen und Invariantentheorie, DMV Seminar, 13, Birkhäuser, 1989.

    Google Scholar 

  16. Kirillov, A.A.: ‘Unitary representations of nilpotent Lie groups’, Russian Math. Surveys 17, no. 4 (1962), 53–104. (Uspekhi Mat. Nauk 17, no. 4 (1962), 57-110)

    MathSciNet  MATH  Google Scholar 

  17. Kirillov, A.A.: Elements of the theory of representations, Springer, 1976 (translated from the Russian).

    Google Scholar 

  18. Dixmier, J.: Enveloping algebras, North-Holland, 1974 (translated from the French).

    Google Scholar 

  19. Simms, D.J. and Woodhouse, N.M.J.: Lectures on geometric quantization, Springer, 1976.

    Google Scholar 

  20. Auslander, L. and Kostant, B.: ‘Polarization and unitary representations of solvable Lie groups’, Invent. Math. 14 (1971), 255–354.

    MathSciNet  MATH  Google Scholar 

  21. Moore, C.C.: ‘Decomposition of unitary representations defined by discrete subgroups of nilpotent groups’, Ann. of Math. 82, no. 1 (1965), 146–182.

    MathSciNet  MATH  Google Scholar 

  22. Rothschild, L.P. and Wolf, J.A.: ‘Representations of semisimple groups associated to nilpotent orbits’, Ann. Sci. Ecole Norm. Sup. Ser. 47 (1974), 155–173.

    MathSciNet  Google Scholar 

  23. Bernat, P., et al.: Représentations des groupes de Lie résolubles, Dunod, 1972.

    Google Scholar 

  24. Ginzburg, V.A.: ‘The method of orbits and perturbation theory’, Soviet Math. Dokl. 20, no. 6 (1979), 1287–1291. (Dokl. Akad. Nauk SSSR 249, no. 3 (1979), 525-528)

    MathSciNet  MATH  Google Scholar 

  25. Kirillov, A.A.: ‘Infinite dimensional groups, their representations, orbits, invariants’, in Proc. Internat. Congress Mathematicians Helsinki 1978, Vol. 2, Acad. Sci. Fennica, 1980, pp. 705-708.

    Google Scholar 

  26. Reyman, A.G. and Semenov-Tian-Shansky, M.A.: ‘Reduction of Hamiltonian systems, affine Lie algebras and Lax equations’. Invent. Math. 54, no. 1 (1979), 81–100.

    MathSciNet  MATH  Google Scholar 

  27. Kirillov, A.A.: Introduction to representation theory and noncommutative analysis. Springer, to appear (translated from the Russian).

    Google Scholar 

  28. Andronov, A.A.: Collected works, Moscow, 1956.

    Google Scholar 

  29. Andronov, A.A., Witt, A.A. and Khaĭkin, S.E.: Theory of oscillators, Dover, reprint, 1987 (translated from the Russian).

    Google Scholar 

  30. Demidovich, B.P.: ‘Orbital stability of bounded solutions of an autonomous system I’, Differential Eq. 4 (1968), 295–301. (DifferensiaVnye Uravneniya 4, no. 4 (1968), 575-588)

    Google Scholar 

  31. Demidovich, B.P.: ‘Orbital stability of bounded solutions of an autonomous system II’, Differential Eq. 4 (1968), 703–709. (DifferensiaVnye Uravneniya 4, no. 8 (1968), 1359-1373)

    Google Scholar 

  32. Coddington, E.A. and Levinson, N.: Theory of ordinary differential equations, McGraw-Hill, 1955.

    Google Scholar 

  33. Hartman, P.: Ordinary differential equations, Birkhäuser, 1982.

    Google Scholar 

  34. Hardy, G.H.: A course of pure mathematics, Cambridge Univ. Press, 1975.

    Google Scholar 

  35. Landau, E.: Grundlagen der Analysis, Akad. Verlagsgesellschaft., 1930.

    Google Scholar 

  36. Cramér, H.: Mathematical methods of statistics, Princeton Univ. Press, 1946.

    Google Scholar 

  37. Wilks, S.S.: Mathematical statistics, Princeton Univ. Press, 1950.

    Google Scholar 

  38. David, H.A.: Order statistics, Wiley, 1970.

    Google Scholar 

  39. Gumble, E.J.: Statistics of extremes, Columbia Univ. Press, 1958.

    Google Scholar 

  40. Hajek, J. and Sidak, Z.: Theory of rank tests, Acad. Press, 1967.

    Google Scholar 

  41. Gnedenko, B.V.: ‘Limit theorems for the maximal term of a variational series’, Dokl. Akad. Nauk SSSR 32, no. 1 (1941), 7–9 (in Russian).

    MathSciNet  MATH  Google Scholar 

  42. Gnedenko, B.V.: ‘Sur la distribution limite du terme maximum d’une série aléatoire’, Ann. of Math. 44, no. 3 (1943), 423–453.

    MathSciNet  MATH  Google Scholar 

  43. Smirnov, N.V.: ‘Limit distributions for the terms of a variational series’, Trudy Mat. Inst. Steklov. 25 (1949), 5–59 (in Russian).

    Google Scholar 

  44. Smirnov, N.V.: ‘Some remarks on limit laws for order statistics’, Theor. Probab. Appl 12, no. 2 (1967), 337–339. (Teor. Veroyatnost. i Primenen. 12, no. 2 (1967), 391-392)

    Google Scholar 

  45. Chibisov, D.M.: ‘On limit distributions for order statistics’, Theor. Probab. Appl. 9, no. 1 (1964), 142–148. (Teor. Veroyatnost. Primenen. 9, no. 1 (1964), 159-165)

    Google Scholar 

  46. Craig, A.T.: ‘On the distributions of certain statistics’, Amner. J. Math. 54 (1932), 353–366.

    MathSciNet  Google Scholar 

  47. Tippett, L.H.C.: ‘On the extreme individuals and the range of samples taken from a normal population’, Biometrika 17 (1925), 364–387.

    MATH  Google Scholar 

  48. Pearson, E.S.: ‘The percentage limits for the distribution of ranges in samples from a normal population (n⩽ 100)’, Biometrika 24 (1932), 404–417.

    Google Scholar 

  49. Serfling, R.: Approximation theorems of mathematical statistics, Wiley, 1980.

    Google Scholar 

  50. Birkhoff, G.: Lattice theory, Colloq. Publ., 25, Amer. Math. Soc, 1973.

    Google Scholar 

  51. Frink, O.: ‘Topology in lattices’, Trans. Amer. Math. Soc. 51 (1942), 569–582.

    MathSciNet  MATH  Google Scholar 

  52. Ward, A.J.: ‘On relations between certain intrinsic topologies in partially ordered sets’, Proc. Cambridge Philos. Soc. 51 (1955), 254–261.

    MathSciNet  MATH  Google Scholar 

  53. Jech, T.J.: Set theory, Acad. Press, 1978 (translated from the German).

    Google Scholar 

  54. Kunen, K.: Set theory, North-Holland, 1980.

    Google Scholar 

  55. Kokorin, A.I. and Kopytov, V.M.: Fully ordered groups, Israel Program Sci. Transi., 1974 (translated from the Russian).

    Google Scholar 

  56. Fuchs, L.: Partially ordered algebraic systems, Pergamon, 1963.

    Google Scholar 

  57. Bourbaki, N.: Elements of mathematics, 2. Algebra. Polynomials and fields. Ordered groups, Hermann, 1974 (translated from the French).

    Google Scholar 

  58. Waerden, B.L. van der: Algebra, 1-2, Springer, 1967–1971 (translated from the German).

    Google Scholar 

  59. Fuchs, L.: Partially ordered algebraic systems, Pergamon, 1963.

    Google Scholar 

  60. Kokorin, A.I. and Kopytov, V.M.: Fully ordered groups, Israel Program Sci. Transi., 1974 (translated from the Russian).

    Google Scholar 

  61. Anderson, M. and Feit, T.: Lattice-ordered groups. An introduction, Reidel, 1988.

    Google Scholar 

  62. Glass, A.M.W. and Holland, W.Ch. (eds.): Lattice-ordered groups. Advances and techniques, Kluwer, 1989.

    Google Scholar 

  63. Martinez, J. (ed.): Ordered algebraic structures, Kluwer, 1989.

    Google Scholar 

  64. Ehresmann, C.:’ structures locales et catégories ordonnés’, in Oeuvres complètes et commentées, Supplément aux Cahiers de Topologie et Géometrie Diffé#x00E9;goriques, 1980.

    Google Scholar 

  65. Howie, J.M.: An introduction to semigroup theory, Acad. Press, 1976.

    Google Scholar 

  66. Birkhoff, G.: Lattice theory, Colloq. Publ., 25. Amer. Math. Soc, 1973.

    Google Scholar 

  67. Vinogradov, A.A.: The non-axiomatizability of latticeordered rings’, Math. Notes 21 (1977), 253–254. (Mat. Zametki 21, no. 4 (1977), 449-452)

    MATH  Google Scholar 

  68. Fuchs, L.: Partially ordered algebraic systems, Pergamon, 1963.

    Google Scholar 

  69. Bigard, A., Keimel, K. and Wolfenstein, S.: Groupes et anneaux reticules, Springer, 1977.

    Google Scholar 

  70. Brumfiel, G.: Partially ordered rings and semi-algebraic geometry, Cambridge Univ. Press, 1979.

    Google Scholar 

  71. Steinberg, S.A.: ‘Radical theory in lattice-ordered rings’, Symp. Mat. 1st. Naz. Alta Mat. 21 (1977), 379–400.

    MathSciNet  Google Scholar 

  72. Steinberg, S.A.: ‘Examples of lattice-ordered rings’, J. of Algebra 72, no. 1 (1981), 223–236.

    MathSciNet  MATH  Google Scholar 

  73. Martinez, J. (ed.): Ordered algebraic structures, Kluwer, 1989.

    Google Scholar 

  74. Fuchs, L.: Partially ordered algebraic systems, Pergamon, 1963.

    Google Scholar 

  75. Birkhoff, G.: Lattice theory, Colloq. Publ., 25, Amer. Math. Soc, 1973.

    Google Scholar 

  76. Kokorin, A.I. and Kopytov, V.M.: Fully ordered groups, Israel Program Sci. Transi., 1974 (translated from the Russian).

    Google Scholar 

  77. Itogi Nauk. Algebra. Topol Geom. 1965 (1967), 116-120.

    Google Scholar 

  78. Itogi Nauk. Algebra. Topol. Geom. 1966 (1968), 99-102.

    Google Scholar 

  79. Satyanarayana, M.: Positively ordered semigroups, M. Dekker, 1979.

    Google Scholar 

  80. Gabovich, E.Ya.: ‘Fully ordered semigroups and their applications’, Russian Math. Surveys 31, no. 1 (1976), 147–216. (Uspekhi Mat. Nauk 31, no. 1 (1976), 137-201)

    MathSciNet  MATH  Google Scholar 

  81. Birkhoff, G.: Lattice theory, Colloq. Publ., 25, Amer. Math. Soc., 1973.

    Google Scholar 

  82. Skornyakov, L.A.: Elements of lattice theory, Hindushtan Publ. Comp., 1977 (translated from the Russian).

    Google Scholar 

  83. Aleksandrov, P.S.: Einführung in die Mengenlehre und die Theorie der reellen Funktionen, Deutsch. Verlag Wissenschaft., 1965 (translated from the Russian).

    Google Scholar 

  84. Cantor, G.: Contributions to the founding of the theory of transfinite numbers, Dover, reprint, 1952 (translated from the German).

    Google Scholar 

  85. Hausdorff, F.: Grundzüge der Mengenlehre, Leipzig, 1914. Reprinted (incomplete) English translation: Set theory, Chelsea (1978).

    Google Scholar 

  86. Kuratowski, K. and Mostowski, A.: Set theory, North-Holland, 1968.

    Google Scholar 

  87. Sierpinski, W.: Cardinal and ordinal numbers, PWN, 1958.

    Google Scholar 

  88. Kuratowski, K.: Introduction to set theory and topology, Pergamon, 1972 (translated from the Polish).

    Google Scholar 

  89. Jech, T.J.: Set theory, Acad. Press, 1978 (translated from the German).

    Google Scholar 

  90. Barwise, J. (ed.): Handbook of mathematical logic, North-Holland, 1977.

    Google Scholar 

  91. Levy, A.: Basic set theory, Springer, 1979.

    Google Scholar 

  92. Dubrovin, B.A., Novikov, S.P. and Fomenko, A.T.: Modem geometry, 1-2, Springer, 1984-1985 (translated from the Russian).

    Google Scholar 

  93. Introduction to topology, Moscow, 1980 (in Russian).

    Google Scholar 

  94. Rokhlin, V.A. and Fuks, D.B.: Beginners’ course in topology. Geometric chapters, Springer, 1984 (translated from the Russian).

    Google Scholar 

  95. Husemoller, D.: Fibre bundles, McGraw-Hill, 1966.

    Google Scholar 

  96. Spanier, E.H.: Algebraic topology, McGraw-Hill, 1966.

    Google Scholar 

  97. Dold, A.: Coll. Algebraic Topology, August 1–10, 1962, Inst. Math. Aarhus Univ., 1962, pp. 2-9.

    Google Scholar 

  98. May, J.: E∞ ring spaces and E∞ ring spectra, Springer, 1977.

    Google Scholar 

  99. Stong, R.: Notes on cobordism theory, Princeton Univ. Press, 1968.

    Google Scholar 

  100. Whitehead, G.W.: Recent advances in homotopy theory, Amer. Math. Soc., 1970.

    Google Scholar 

  101. Rudyak, Yu.B.: ‘On the orientability of spherical, topological, and piecewise-linear fibrations in complex K-theory’, Soviet Math. Dokl. 37, no. 1 (1988), 283–286. (Dokl. Akad. Nauk SSSR 298, no. 6 (1988), 1338-1340)

    MathSciNet  MATH  Google Scholar 

  102. Hirsch, M.W.: Differential topology, Springer, 1976.

    Google Scholar 

  103. Birnbaum, Z. and Orlicz, W.: ‘Ueber die Verallgemeinerungen des Begriffes der zueinander konjugierten Potenzen’, Studio, Math. 3 (1931), 1–67.

    Google Scholar 

  104. Krasnosel’skiĭ, MA. and Rutitskiĭ, Ya.B.: Convex functions and Orlicz spaces, Noordhoff, 1961 (translated from the Russian).

    Google Scholar 

  105. Luxemburg, W.A.J. and Zaanen, A.C.: Riesz spaces, I, North-Holland, 1971.

    Google Scholar 

  106. Orlicz, W.: ‘Ueber eine gewisse Klasse von Räumen vom Typus B’, Bull. Intern. Acad. Pol. Ser. A 8/9 (1932), 207–220.

    Google Scholar 

  107. Krasnosel’skiĭ, M.A. and Rutitskiĭ, Ya.B.: Convex functions and Orlicz spaces, Noordhoff, 1961 (translated from the Russian).

    Google Scholar 

  108. Gaposhkin, V.F.: ‘Existence of absolute bases in Orlicz spaces’, Fund. Anal. Appl. 1, no. 4 (1967), 278–284. (Funkts. Anal, i Phlozhen. 1, no. 4 (1967), 26-32)

    MATH  Google Scholar 

  109. Kreĭn, S.G., Petunin, Yu.I. and Semenov, E.M.: Interpolation of linear operators. Amer. Math. Soc. 1982 (translated from the Russian).

    Google Scholar 

  110. Lindenstrauss. J. and Tzaerire L.: Classical Banach spaces, 1-2, Springer, 1977-1979.

    Google Scholar 

  111. Luxemburg, W.A.J. and Zaanen, A.C.: Riesz spaces, I, North-Holland, 1971.

    Google Scholar 

  112. Chacon, R.V. and Ornstein, D.S.: ‘A general ergodic theorem’, Illinois J. Math. 4, no. 2 (1960), 153–160.

    MathSciNet  MATH  Google Scholar 

  113. Hopf, E.: ‘On the ergodic theorem for positive linear operators’, J. Reine Angew. Math. 205(1960), 101–106.

    MathSciNet  MATH  Google Scholar 

  114. Neveu, J.: Mathematical foundations of the calculus of probabilities, Holden-Day, 1965 (translated from the French).

    Google Scholar 

  115. Alaoglu, M.A. and Cunsolo, J.: ‘An ergodic theorem for semigroups’. Proc. Amer. Math. Soc. 24, no. 1 (1970), 161–170.

    MathSciNet  Google Scholar 

  116. Chacon. R.V.: ‘Convergence of operator averages’, in Ergodic Theory. Proc. Internat. Symp. New Orleans, 1961, Acad. Press, 1963. pp. 89-120.

    Google Scholar 

  117. Terreee, T.R.: ‘A ratio ergodic theorem for operator semigroups’. Boll. Un. Mat. Ital. 6. no. 2 (1972), 175–180.

    MathSciNet  Google Scholar 

  118. Krengel, U.: Ergodic theorems, de Gruyter, 1985.

    Google Scholar 

  119. Garcia, A.: Topics in almost everywhere convergence, Markham, 1970.

    Google Scholar 

  120. Uhlenbeck, G.E. and Ornstein, L.S.: ‘On the theory of Brownian motion’, Phys. Rev. 36 (1930), 823–841.

    Google Scholar 

  121. Chandrasekhar, S.: ‘Stochastic problems in physics and astronomy’, Rev. Modem Phys. 15 (1943), 1–89.

    MathSciNet  MATH  Google Scholar 

  122. Bernshteĭn, S.N.: ‘Sur les chaînes linéaires de Markov quasi-continues’, Dokl. Akad. Nauk. SSSR 1, no. 1 (1934), 4–9.

    Google Scholar 

  123. Kolmogorov, A.N.: ‘Zufällige Bewegungen (zur Theorie der Brownschen Bewegung)’, Ann. of Math. 35 (1934), 116–117.

    MathSciNet  MATH  Google Scholar 

  124. Doob, J.L.: ‘The Brownian movement and stochastic equations’, Ann. of Math. 43 (1942), 351–369.

    MathSciNet  MATH  Google Scholar 

  125. Wax, N. (ed.): Selected papers on noise and stochastic processes, Dover, 1954.

    Google Scholar 

  126. Iranpour, R. and Chacon, P.: Basic stochastic processes, The Marc Kac lectures, MacMillan, 1988.

    Google Scholar 

  127. Cox, D.R. and Miller, H.D.: The theory of stochastic processes, Methuen, 1965.

    Google Scholar 

  128. Malliavin, P.:’ stochastic calculus of variations and hypoelliptic operators’, in K. Itô (ed.): Proc. Internat. Conf. Stochastic Differential Equations Kyoto, 1976, Wiley, 1978, pp. 195-263.

    Google Scholar 

  129. Stroock, D.W.: ‘The Malliavin calculus, a functional analytic approach’, J. Funct. Anal. 44 (1981), 212–257.

    MathSciNet  MATH  Google Scholar 

  130. Schmuland, B.: ‘Regularity of I2-valued Ornstein — Uhlenbeck processes’, CR. Math. Acad. Sci. Soc. R. Canada 10 (1988), 119–124.

    MathSciNet  MATH  Google Scholar 

  131. Nelson, E.: Dynamical theories of Brownian motion, Princeton Univ. Press, 1967.

    Google Scholar 

  132. Röckner, M.: ‘Traces of harmonic functions and a new path space for the free quantum field’, J. Funct. Anal. 79 (1988), 211–249.

    MathSciNet  MATH  Google Scholar 

  133. Kolsrud, T.: ‘Gaussian random fields, infinite dimensional Ornstein — Uhlenbeck processes, and symmetric Markov processes’, Acta Appl. Math. 12 (1988), 237–263.

    MathSciNet  MATH  Google Scholar 

  134. Meyer, P.A.: ‘Transformations de Riesz pour les lois Gaussi-ennes’, in J. Azéma and M. Yor (eds.): Sérn. Prob. XVIII, Lecture notes in math., Vol. 1059, Springer, 1984, pp. 179-193.

    Google Scholar 

  135. Rogers, L.C.G. and Williams, D.: Diffusion, Markov processes and martingales, I-II, Wiley, 1987.

    Google Scholar 

  136. Karatzas, I. and Shreve, S.E.: Brownian motion and stochastic calculus, Springer, 1988.

    Google Scholar 

  137. Orr, W. McF.: ‘The stability or instability of the steady motions of a liquid I’, Proc. R. Irish Acad. A 27 (1907), 9–68.

    Google Scholar 

  138. Orr, W. McF.: ‘The stability or instability of the steady motions of a perfect liquid and of a viscous liquid II’, Proc. R. Irish Acad. A 27 (1907), 69–138.

    Google Scholar 

  139. Sommerfeld, A.: Proc. fourth Internat. Congress of Mathematicians Rome, 1908, 1909, pp. 116-124.

    Google Scholar 

  140. Lin, C.C.: Theory of hydrodynamic stability, Cambridge Univ. Press, 1955.

    Google Scholar 

  141. Birkhoff, G., et al. (eds.): Hydrodynamic instability, Proc. Symp. Appl. Math., 13, Amer. Math. Soc., 1962.

    Google Scholar 

  142. Gersting, J.M. and Janowski, D.F.: ‘Numerical methods for Orr—Sommerfeld problems’, Internat. J. Numer. Methods Eng. 4 (1972), 195–206.

    MATH  Google Scholar 

  143. Heisenberg, W.: Ann. of Phys. 74, no. 15 (1924), 577–627.

    Google Scholar 

  144. Betchov, R. and Criminale, W.O.: Stability of parallel flows, Acad. Press, 1967.

    Google Scholar 

  145. Schlichting, H.: ‘Fluid dynamics I’, in S. Flügge (ed.): Handbuch der Physik, Vol. VIII/1, Springer, 1959, pp. 351-450.

    Google Scholar 

  146. Georgescu, A.: Hydrodynamic stability theory, Marti nus Nijhoff, 1985.

    Google Scholar 

  147. Berger, M.: Geometry, 1-2, Springer, 1987 (translated from the French).

    Google Scholar 

  148. Coxeter, H.S.M.: Introduction to geometry, Wiley, 1963.

    Google Scholar 

  149. Denes, J. and Keedwell, A.D.: Latin squares and their applications, Acad. Press, 1974.

    Google Scholar 

  150. Hall, M.: Combinatorial theory, Wiley, 1986.

    Google Scholar 

  151. Beth, T., Jungnickel, D. and Lenz, H.: Design theory, Cambridge Univ. Press, 1986.

    Google Scholar 

  152. Jungnickel, D.: ‘Latin squares, their geometries and their groups. A survey’, in Proc. IMA Workshops on Coding and Design Theory Minneapolis, 1988, Springer, to appear.

    Google Scholar 

  153. Lyusternik, L.A. and Sobolev, V.1.: Elements of functional analysis, Wiley & Hindustan Publ. Comp., 1974 (translated from the Russian).

    Google Scholar 

  154. Kolmogorov, A.N. and Fomin, S.V.: Elements of the theory of functions and functional analysis, 1-2, Pitman, 1981 (translated from the Russian).

    Google Scholar 

  155. Achieser, N.I. [N.I. Akhiezer] and Glasman, I.M. [I.M. Glaz’man]: Theorie der linearen Operatoren in Hilbertraum, Akad. Verlag, 1958 (translated from the Russian).

    Google Scholar 

  156. Yosida, K.: Functional analysis, Springer, 1980.

    Google Scholar 

  157. Bakhvalov, N.S.: Numerical methods: analysis, algebra, ordinary differential equations, Mir, 1977 (translated from the Russian).

    Google Scholar 

  158. Krylov, V.I., Bobkov, V.V. and Monastyrnyĭ, P.I.: Numerical methods of higher mathematics, 2, Minsk, 1975 (in Russian).

    Google Scholar 

  159. Samarskii, A.A. and Nikolaev, E.S.: Numerical methods for grid equations, 1-2, Birkhäuser, 1989 (translated from the Russian).

    Google Scholar 

  160. Ascher, U.M., Mattheij, R.M.M. and Russell, R.D.: Numerical solution of boundary value problems for ordinary differential equations, Prentice Hall, 1988.

    Google Scholar 

  161. Meyer, G.M.: ‘Continuous orthonormalization for boundary value problems’, J. Comput. Phys. 62 (1986), 248–262.

    MathSciNet  MATH  Google Scholar 

  162. Dieudonné, J.A.: La géométrie des groups classiques, Springer, 1955.

    Google Scholar 

  163. Artin, E.: Geometric algebra, Interscience, 1957.

    Google Scholar 

  164. Automorphisms of the classical groups, Moscow, 1976 (in Russian; translated from the English and the French). Collection of translations.

    Google Scholar 

  165. Weyl, H.: The classical groups, their invariants and representations, Princeton Univ. Press, 1946.

    Google Scholar 

  166. Zhelobenko, D.P.: Compact Lie groups and their representations, Amer. Math. Soc., 1973 (translated from the Russian).

    Google Scholar 

  167. Bourbaki, N.: Elements of mathematics. Algebra: Modules. Rings. Forms, 2, Addison-Wesley, 1975, Chapt.4;5;6 (translated from the French).

    Google Scholar 

  168. O’Meara, O.T.: Introduction to quadratic forms, Springer, 1973.

    Google Scholar 

  169. Husemoller, D.: Fibre bundles, McGraw-Hill, 1966.

    Google Scholar 

  170. Dieudonné, J.: On the automorphisms of the classical groups, Mem. Amer. Math. Soc., 2, Amer. Math. Soc., 1951.

    Google Scholar 

  171. Sachkov, V.N.: Combinatorial methods of discrete mathematics, Moscow, 1977 (in Russian).

    Google Scholar 

  172. Dénes, J. and Keedwell, A.D.: Latin squares and their applications, Acad. Press, 1974.

    Google Scholar 

  173. Hall, M.: Combinatorial theory, Wiley, reprint, 1986.

    Google Scholar 

  174. Ryser, H.J.: Combinatorial mathematics. Math. Assoc. Amer., 1963.

    Google Scholar 

  175. Hedayat, A. and Seiden, E.: ‘On the theory and application of sum composition of Latin squares and orthogonal Latin squares’, Pacif. J. Math. 54, no. 2 (1974), 85–113.

    MathSciNet  MATH  Google Scholar 

  176. Lindner, Ch.: ‘Embedding orthogonal partial Latin squares’, Proc. Amer. Math. Soc. 59, no. 1 (1976), 184–186.

    MathSciNet  MATH  Google Scholar 

  177. Beth, T., Jungnickel, D. and Lenz, H.: Design theory, Cambridge Univ. Press, 1986.

    Google Scholar 

  178. Jungnickel, D.: ‘Latin squares, their geometries and their groups. A survey’, in Proc. IMA Workshops on Coding and Design Theory Minneapolis, 1988, Springer, To appear.

    Google Scholar 

  179. Beth, T.: ‘Eine Bemerkung zur Abschätzung der Anzahl orthogonaler lateinischer Quadrate mittels Siebverfahren’, Abh. Math. Sem. Hamburg 53 (1983), 284–288.

    MathSciNet  MATH  Google Scholar 

  180. Hedayat, A.S. and Stufken, J.: Orthogonal arrays and their applications, To appear.

    Google Scholar 

  181. Mal’tsev, A.I.: Foundations of linear algebra, Freeman, 1963 (translated from the Russian).

    Google Scholar 

  182. Gantmacher, F.R. [F.R. Gantmakher]: The theory of matrices, 1, Chelsea, reprint, 1959, p. 263ff.

    Google Scholar 

  183. Noll, W.: Finite dimensional spaces, Nijhoff, 1987, Sect. 43.

    Google Scholar 

  184. Turnball, H.W. and Aitken, A.C.: An introduction to the theory of canonical matrices, Blackie & Son, 1932.

    Google Scholar 

  185. Millman, R.S. and Parker, G.D.: Elements of differential geometry, Prentice Hall, 1977, p. 101.

    Google Scholar 

  186. Chibyshiv. P.L.: Complete works, 2, Moscow-Leningrad, 1947, pp. 103–126: 314-334; 335-341: 357-374 (in Russian).

    Google Scholar 

  187. Bernshteĭn. S.N.: Collected works, 2. Moscow, 1954, pp. 7–106 (in Russian).

    Google Scholar 

  188. Geronimus, Ya.L.: ‘Orthogonal polynomials’, Transi Amer. Math. Soc. 108 (1977), 37–130.

    MATH  Google Scholar 

  189. Suetin, P.K.: Classical orthogonal polynomials, Moscow, 1979 (in Russian).

    Google Scholar 

  190. Nikiforov, A.F. and Uvarov, V.B.: Special functions of mathematical physics, Birkhäuser, 1988 (translated from the Russian).

    Google Scholar 

  191. Bateman, H. and Erdélyi, A.: Higher transcendental functions, 2. Bessel functions, parabolic cylinder functions, orthogonal polynomials, McGraw-Hill, 1953.

    Google Scholar 

  192. Jackson, D.: Fourier series and orthogonal polynomials, Math. Assoc. Amer., 1971.

    Google Scholar 

  193. Szegö, G.: Orthogonal polynomials, Amer. Math. Soc, 1975.

    Google Scholar 

  194. Guide to special functions, Moscow, 1979 (in Russian; translated from the English).

    Google Scholar 

  195. Shohat, J.A., Hille, E. and Walsh, J.L.: A bibliography on orthogonal polynomials, Nat. Acad. Sci. USA, 1940.

    Google Scholar 

  196. Askey, R.: ‘Discussion of Szegö’s paper ‘An outline of the history of orthogonal polynomials’’, in R. Askey (ed.): G. Szegü, Collected Works, Vol. 3, Birkhäuser, 1982, pp. 866-869.

    Google Scholar 

  197. Chihara, T.S.: An introduction to orthogonal polynomials, Gordon & Breach, 1978.

    Google Scholar 

  198. Freud, G.: Orthogonal polynomials, Pergamon, 1971.

    Google Scholar 

  199. Lubinsky, D.S.: ‘A survey of general orthogonal polynomials for weights on finite and infinite intervals’, Acta Applic. Math. 10 (1987), 237–296.

    MathSciNet  MATH  Google Scholar 

  200. Nevai, P. (ed.): Orthogonal polynomials: theory and practice, Kluwer, 1990.

    Google Scholar 

  201. Szegö, G.: ‘Beiträge zur Theorie der Toeplitzschen Formen, I’, Math. Z. 6 (1920), 167–202. Also: Collected Works, Vol. 1, Birkhäuser, 1982, pp. 237-272.

    MathSciNet  Google Scholar 

  202. Szegö, G.: ‘Beitrège zur Theorie der Toeplitzschen Formen, IF’, Math. Z. 9 (1921), 167–190. Also: Collected Works, Vol. 1, Birkhäuser, 1982, pp. 279-305.

    MathSciNet  Google Scholar 

  203. Szegö, G.: ‘Über orthogonale Polynome, die zu einer gegebenen Kurve der komplexen Ebene gehören’, Math. Z. 9 (1921), 218–270. Also: Collected Works, Vol. 1, Birkhäuser, 1982, pp. 316-368.

    MathSciNet  Google Scholar 

  204. Carleman, T.: ‘Über die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen’, Arkfor Mat., Astr. och Fys. 17, no. 9 (1922-1923), 1–30.

    Google Scholar 

  205. Szegö, G.: Orthogonal polynomials, Amer. Math. Soc., 1975.

    Google Scholar 

  206. Geronimus, Ya.L.: Polynomials orthogonal on a circle and interval, Pergamon, 1960 (translated from the Russian).

    Google Scholar 

  207. Smirnov, V.I.: ‘On the theory of orthogonal polynomials of a complex variable’, Zh. Leningrad. Fiz.-Mat. Obshch. 2, no. 1 (1928), 155–179 (in Russian).

    Google Scholar 

  208. Korovkin, P.P.: ‘On polynomials orthogonal on a rectifiable contour in the presence of a weight’, Mat. Sb. 9, no. 3 (1941), 469–485 (in Russian).

    MathSciNet  Google Scholar 

  209. Suetin, P.K.: ‘Fundamental properties of polynomials orthogonal on a contour’, Russian Math. Surveys 21, no. 2 (1966), 35–83. (Uspekhi Mat. Nauk 21, no. 2 (1966), 41-88)

    MathSciNet  MATH  Google Scholar 

  210. Suetin, P.K.: ‘Polynomials orthogonal over a region and Bieberbach polynomials’, Proc. Steklov Inst. Math. 100 (1974). (Trudy Mat. Inst. Steklov. 100 (1971))

    Google Scholar 

  211. Delsarte, Ph. and Genin, Y.: ‘On the role of orthogonal polynomials on the unit circle in digital signal processing applications’, in P. Nevai (ed.): Orthogonal polynomials: theory and practice, Kluwer, 1990, pp. 115-133.

    Google Scholar 

  212. Saff, E.B.: ‘Orthogonal polynomials from a complex perspective’, in P. Nevai (ed.): Orthogonal polynomials: theory and practice, Kluwer, 1990, pp. 363-393.

    Google Scholar 

  213. Lyustkrnik, L.A. and Sobolev, V.I.: Elements of functional analysis, Wiley & Hindustan Publ. Comp., 1974 (translated from the Russian).

    Google Scholar 

  214. Achieser, N.I. [N.I. Akhiezer and Glasman, I.M. [I.M. Glaz’man]: Theorie der linearen Operatoren in Hilbertraum, Akad. Verlag, 1958 (translated from the Russian).

    Google Scholar 

  215. Riesz, F. and Szökefalvi-Nagy, B.: Functional analysis, F. Ungar, 1955 (translated from the French).

    Google Scholar 

  216. Luzin, N.N.: The integral and trigonometric series, Moscow-Leningrad, 1951 (in Russian).

    Google Scholar 

  217. Banach, S.: Théorie des opérations linéaires, Chelsea, reprint, 1955.

    Google Scholar 

  218. Geronimus, Ya.L.: Orthogonal polynomials, Consultants Bureau, 1961 (translated from the Russian).

    Google Scholar 

  219. Kaczmarz, S. and Steinhaus, H.: Theorie der Orthogonalreihen, Chelsea, reprint, 1951.

    Google Scholar 

  220. Jackson, D.: Fourier series and orthogonal polynomials, Math. Assoc. Amer., 1971.

    Google Scholar 

  221. Szegö, G.: Orthogonal polynomials. Amer. Math. Soc., 1975.

    Google Scholar 

  222. Alexits, G.: Konvergenzprobleme der Orthogonalreihen, Ungar. Akad. Wissenschaft., 1961.

    Google Scholar 

  223. Tricomi, F.G.: Vorlesungen über Orthogonalreihen, Springer, 1970 (translated from the Italian).

    Google Scholar 

  224. Olevskiı, A.M.: Fourier series with respect to general orthogonal systems, Springer, 1975 (translated from the Russian).

    Google Scholar 

  225. Men’shov, D.E. and Ul’yanov, P.L.: ‘On the metric theory of functions at Moscow University over 50 years’, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh. 5 (1967), 24–36 (in Russian).

    Google Scholar 

  226. Talalyan, A.A.: ‘The representation of measurable functions by series’, Russian Math. Surveys 15, no. 5 (1960), 75–136. (Uspekhi Mat. Nauk 15, no. 5 (1960), 77-141)

    MathSciNet  MATH  Google Scholar 

  227. Ul’yanov, P.L.: ‘Solved and unsolved problems in the theory of trigonometric and orthogonal series’, Russian Math. Surveys 19, no. 1 (1964), 1–62. (Uspekhi Mat. Nauk 19, no. 1 (1964), 3-69)

    Google Scholar 

  228. J. Soviet Math. 1, no. 6 (1973). (Itogi Nauk. Mat. Anal. 1970 (1971))

    Google Scholar 

  229. Bourbaki, N.: Eléments d’histoire des mathématiques, Hermann, 1974.

    Google Scholar 

  230. Paplauskas, A.B.: Trigonometric series from Euler to Lebesgue, Moscow, 1966 (in Russian).

    Google Scholar 

  231. Kaczmarz, S. and Steinhaus, H.: Theorie der Orthogonalreihen, Chelsea, reprint, 1951.

    Google Scholar 

  232. Golubov, B.I.: ‘Series with respect to the Haar system’, J. Soviet Math. 1, no. 6 (1973), 704–726. (Itogi Nauk. Mat. Anal. 1970 (1971), 109-146)

    MathSciNet  MATH  Google Scholar 

  233. Balashov, L.A. and Rubenshteın, A.I.: ‘Series with respect to the Walsh system and their generalizations’, J. Soviet Math. 1, no. 6 (1973), 727–763. (Itogi Nauk. Mat. Anal. 1970 (1971), 147-202)

    Google Scholar 

  234. Doob, J.L.: Stochastic processes, Chapman and Hall, 1953.

    Google Scholar 

  235. Loève, M.: Probability theory, Springer, 1977.

    Google Scholar 

  236. Zygmund, A.: Trigonometric series, 1-2, Cambridge Univ. Press, 1988.

    Google Scholar 

  237. Kantorovich, L.V. and Akilov, G.P.: Funktionalanalysis in normierten Räume, Akad. Verlag, 1964 (translated from the Russian).

    Google Scholar 

  238. Dunford, N. and Schwartz, J.: Linear operators. General theory, Wiley, reprint, 1988.

    Google Scholar 

  239. Kaczmarz, S. and Steinhaus, H.: Theorie der Orthogonalreihen, Chelsea, reprint, 1951.

    Google Scholar 

  240. Birkhoff, G.: ‘Orthogonality in linear metric spaces’, Duke Math. J. 1 (1935), 169–172.

    MathSciNet  MATH  Google Scholar 

  241. James, R.: ‘Orthogonality and linear functionals in normed linear spaces’, Trans. Amer. Math. Soc. 61 (1947), 265–292.

    MathSciNet  Google Scholar 

  242. James, R.: ‘Inner products in normed linear spaces’, Bull. Amer. Math. Soc. 53 (1947), 559–566.

    MathSciNet  MATH  Google Scholar 

  243. Amir, D.: Characterizations of inner product spaces, Birkhäuser, 1986.

    Google Scholar 

  244. Achieser, N.I. [N.I. Akhiezer] and Glasmann, I.M. [I.M. Glaz’man]: Theorie der linearen Operatoren in Hilbertraum, Akad. Verlag, 1958 (translated from the Russian).

    Google Scholar 

  245. Istrăţescu, V.I.: Inner product structures, Reidel, 1987.

    Google Scholar 

  246. Gantmakher, F.R.: The theory of matrices, Chelsea, reprint, 1977 (translated from the Russian).

    Google Scholar 

  247. Kurosh, A.G.: Higher algebra, Mir, 1972 (translated from the Russian).

    Google Scholar 

  248. Voevodin, V.V.: Computational foundations of linear algebra, Moscow, 1977 (in Russian).

    Google Scholar 

  249. Bakhvalov, N.S.: Numerical methods: analysis, algebra, ordinary differential equations, Mir, 1977 (translated from the Russian).

    Google Scholar 

  250. Kaczmarz, S. and Steinhaus, H.: Theorie der Orthogonalreihen, Chelsea, reprint, 1951.

    Google Scholar 

  251. Olevskiı, A.M.: ‘On the extension of a sequence of functions to a complete orthonormal system’, Math. Notes 6, no. 6 (1969), 908–913. (Mat. Zametki 6, no. 6 (1969), 737-747)

    Google Scholar 

  252. Men’shov, D.E.: ‘Sur les séries des fonctions orthogonales bornees dans leur ensemble’, Mat. Sb. 3 (1938), 103–120.

    Google Scholar 

  253. Franklin, Ph.: ‘A set of continuous orthogonal functions’, Math. Ann. 100 (1928), 522–529.

    MathSciNet  MATH  Google Scholar 

  254. Skornyakov, L.A.: Complemented modular lattices and regular rings, Oliver & Boyd, 1964 (translated from the Russian).

    Google Scholar 

  255. Itogi Nauki. Algebra. Topol. Geom. 1968 (1970), Moscow (in Russian).

    Google Scholar 

  256. Fofanova, T.S.: ‘General theory of lattices’, in Ordered sets and lattices, Vol. 3, Saratov, 1975, pp. 22–40 (in Russian).

    MathSciNet  Google Scholar 

  257. Murray, F. and Neumann, J. von: ‘On rings of operators’, Ann. of Math. 37, no. 1 (1936), 116–229.

    MathSciNet  Google Scholar 

  258. Loomis, L.H.: ‘The lattice theoretic background of the dimension theory of operator algebras’, Mem. Amer. Math. Soc. 18 (1955), 1–36.

    MathSciNet  Google Scholar 

  259. Maeda, S.: ‘Dimension functions on certain general lattices’, J. Sci. Hiroshima Univ. Ser. A 19, no. 2 (1955), 211–237.

    MathSciNet  MATH  Google Scholar 

  260. Kaplansky, I.: ‘Any orthocomplemented complete modular lattice is a continuous geometry’, Ann. of Math. 61, no. 3 (1955), 524–541.

    MathSciNet  MATH  Google Scholar 

  261. Blyth, T.S. and Janowitz, M.F.: Residuation theory, Pergamon, 1972.

    Google Scholar 

  262. Kalmbach, G.: Orthomodular lattices, Acad. Press, 1983.

    Google Scholar 

  263. Kalmbach, G.: Measures and Hilbert lattices, World Scientific, 1986.

    Google Scholar 

  264. Beran, L.: Orthomodular lattices, Reidel, 1985.

    Google Scholar 

  265. Kolmogorov, A.N. and Fomin, S.V.: Elements of the theory of functions and functional analysis, 1-2, Pitman, 1981 (translated from the Russian).

    Google Scholar 

  266. Kaczmarz, S. and Steinhaus, H.: Theorie der Orthogonalreihen, Chelsea, reprint, 1951.

    Google Scholar 

  267. Weidmann, J.: Linear operators in Hilbert space, Springer, 1980.

    Google Scholar 

  268. Yosida, K.: Functional analysis, Springer, 1980.

    Google Scholar 

  269. Kneser, A.: ‘Untersuchungen über die reellen Nullstellen der Integrale linearer Integralgleichungen’, Math. Ann. 42 (1893), 409–435.

    MathSciNet  MATH  Google Scholar 

  270. Mikusinksi, J.G.: ‘On Fite’s oscillation theorems’, Colloq. Math. 2 (1951), 34–39.

    Google Scholar 

  271. Kondrat’ev, V.A.: ‘The oscillatory character of solutions of the equation y (n)+p(x)y =0’, Trudy Moskov. Mat. Obshch. 10 (1961), 419–436 (in Russian).

    Google Scholar 

  272. Kiguradze, I.T.: ‘On the oscillatory character of solutions of the equation y (n) + p (x)y =0’, Mat. Sb. 65, no. 2 (1964), 172–187 (in Russian).

    MathSciNet  Google Scholar 

  273. Chanturiya, T.A.: ‘On a comparison theorem for linear differential equations’, Math. USSR Izv. 10, no. 5 (1976), 1075–1088. (Izv. Akad. Nauk. SSSR Ser. Mat. 40, no. 5 (1976), 1128-1142)

    Google Scholar 

  274. Ličko, I. and Švec, M.: ‘La charactere oscillatoire des solutions de l’équation y (n) + f (x)y α=0, n > 1’, Chekhosl. Mat. Zh. 13 (1963), 481–491.

    Google Scholar 

  275. Kiguradze, I.T.: ‘On the oscillatory and monotone solutions of ordinary differential equations’, Arch. Math. 14, no. 1 (1978), 21–44.

    MathSciNet  MATH  Google Scholar 

  276. Swanson, C.A.: Comparison and oscillation theory of linear differential equations, Acad. Press, 1968.

    Google Scholar 

  277. Hartman, P.: Ordinary differential equations, Birkhäuser, 1982.

    Google Scholar 

  278. Myshkis, A.D.: Linear differential equations with retarded argument, Moscow, 1972 (in Russian).

    Google Scholar 

  279. Koplatadze, R.G. and Chanturiya, T.A.: On the oscillatory properties of differential equations with deviating argument, Tbilisi, 1977 (in Russian).

    Google Scholar 

  280. Levin, A. Yu.: ‘Non-oscillation of the solutions of the equation x n + p 1 (tx (n-1) +... + p n(t)x =0’, Russian Math. Surveys 24, no. 2 (1969), 43–99. (Uspekhi Mat. Nauk 24, no. 2 (1969), 43-96)

    Google Scholar 

  281. Hale, J.K.: Ordinary differential equations, Wiley, 1969.

    Google Scholar 

  282. Reid, W.T.: Sturmian theory for ordinary differential equations, Springer, 1980.

    Google Scholar 

  283. Gantmakher, F.R. and Kreın, M.G.: Oscillation matrices and kernels and small vibrations of mechanical systems, Dept. Commerce, 1961 (translated from the Russian).

    Google Scholar 

  284. Karlin, S.: Total positivity, Stanford Univ. Press, 1960.

    Google Scholar 

  285. Gantmakher, F.R. and Kreın, M.G.: Oscillation matrices and kernels and small vibrations of mechanical systems, Dept. Commerce, 1961 (translated from the Russian).

    Google Scholar 

  286. Kari.in, S.: Total positivity, Stanford Univ. Press, 1960.

    Google Scholar 

  287. Gantmacher, F.R. [F.R. Gantmakher]: The theory of matrices, 2, Chelsea, reprint, 1959, Chapt. XIII, § 9 (translated from the Russian).

    Google Scholar 

  288. Hartman, P.: Ordinary differential equations, Birkhäuser, 1982.

    Google Scholar 

  289. Swanson, C.A.: Comparison and oscillation theory of linear differential equations, Acad. Press, 1968.

    Google Scholar 

  290. Kiguradze, I.T.: Some singular boundary value problems for ordinary differential equations, Tbilisi, 1975 (in Russian).

    Google Scholar 

  291. Coddington, E.A. and Levinson, N.: Theory of ordinary differential equations, McGraw-Hill, 1955.

    Google Scholar 

  292. Stromberg, K.R.: An introduction to classical real analysis, Wadsworth, 1981, p. 120.

    Google Scholar 

  293. Goldberg, R.R.: Methods of real analysis, Blaisdell, 1964, p. 129.

    Google Scholar 

  294. Lyapunov, A.M.: Stability of motion, Acad. Press, 1966 (translated from the Russian).

    Google Scholar 

  295. Poincaré, H.: Les méthodes nouvelles de la mécanique céleste, 1, Gauthier-Villars, 1892.

    Google Scholar 

  296. Krylov, N.M. and Bogolyubov, N.N.: Introduction to nonlinear mechanics, Princeton Univ. Press, 1947 (translated from the Russian).

    Google Scholar 

  297. Nemytskiı, V.V. and Stepanov, V.V.: Qualitative theory of differential equations, Princeton Univ. Press, 1960 (translated from the Russian).

    Google Scholar 

  298. Malkin, I. G.: Some problems of the theory of non-linear oscillations, Moscow-Leningrad, 1956 (in Russian).

    Google Scholar 

  299. Bogolyubov, N.N. and Mitropol’skii, Yu.A.: Asymptotic methods in the theory of non-linear oscillations, Hindushtan Publ. Comp., Delhi, 1961 (translated from the Russian).

    MATH  Google Scholar 

  300. Erugin, N.P.: Linear systems of ordinary differential equations with periodic and quasi-periodic coefficients, Acad. Press, 1966 (translated from the Russian).

    Google Scholar 

  301. Pliss, V.A.: Non-local problems of the theory of oscillations, Acad. Press, 1961 (translated from the Russian).

    Google Scholar 

  302. Krasnosel’skiı, M.A.: The operator of translation along trajectories of differential equations, Amer. Math. Soc, 1968 (translated from the Russian).

    Google Scholar 

  303. Yakubovich, V.A. and Starzhinskiı, V.M.: Linear differential equations with periodic coefficients, Wiley, 1975 (translated from the Russian).

    Google Scholar 

  304. Mitropol’skii, Yu.A. and Lykova, O.B.: Integral manifolds in non-linear mechanics, Moscow, 1973 (in Russian).

    Google Scholar 

  305. Mishchenko, E.F. and Rozov, N. Kh.: Differential equations with small parameters and relaxation oscillations, Plenum Press, 1980 (translated from the Russian).

    Google Scholar 

  306. Pliss, V.A.: Integral sets of periodic systems of differential equations, Moscow, 1977 (in Russian).

    Google Scholar 

  307. Arnol’d, V.I.: ‘Small denominators and problems of stability of motion in classical and celestial mechanics’, Russian Math. Surveys 18, no. 6 (1963), 84–191. (Uspekhi Mat. Nauk 18, no. 6 (1963), 91-192)

    Google Scholar 

  308. Levinson, N. and Smit, O.K.: ‘A general equation for relaxation oscillations’, Duke Math. J. 9 (1942), 382–403.

    MathSciNet  MATH  Google Scholar 

  309. Littlewood, J.E.: ‘The equation ÿ — k (1 — y 2)ÿ + y =bμk cos (μt + α) for large k, and its generalizations’, Acta Math. 97, no. 3-4 (1957), 267–308.

    MathSciNet  MATH  Google Scholar 

  310. Grasman, J.: Asymptotic methods for relaxation oscillations and applications, Springer, 1982.

    Google Scholar 

  311. Hale, J.K.: Ordinary differential equations, Wiley, 1969.

    Google Scholar 

  312. Hayashi, C.: Nonlinear oscillations in physical systems, McGraw-Hill, 1964.

    Google Scholar 

  313. Minorsky, N.: Nonlinear oscillations, v. Nostrand, 1962.

    Google Scholar 

  314. Nayfeh, A.H. and Mook, D.T.: Nonlinear oscillations, Wiley, 1979.

    Google Scholar 

  315. Roseau, M.: Vibrations nonlinéaires et théorie de la stabilité, Springer, 1966.

    Google Scholar 

  316. Sanders, J.A. and Verhulst, F.: Averaging methods in nonlinear dynamical systems, Springer, 1985.

    Google Scholar 

  317. Schmidt, G. and Tondl, A.: Non-linear vibrations, Cambridge Univ. Press, 1967.

    Google Scholar 

  318. Urabe, M.: Nonlinear autonomous oscillations, Acad. Press, 1967.

    Google Scholar 

  319. Guckenheimer, J. and Holmes, Ph.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer, 1983.

    Google Scholar 

  320. Pankov, A.A.: Bounded and almost periodic solutions of operator equations, Kluwer, 1991 (translated from the Russian).

    Google Scholar 

  321. Mandel’shtam, L.I.: Lectures on the theory of oscillations, Moscow, 1972 (in Russian).

    Google Scholar 

  322. Landau, L.D. and Lifshitz, E.M.: Quantum mechanics, Pergamon, 1965 (translated from the Russian).

    Google Scholar 

  323. Arnol’d, V.I.: Mathematical methods of classical mechanics, Springer, 1978 (translated from the Russian).

    Google Scholar 

  324. Schiff, L.I.: Quantum mechanics, McGraw-Hill, 1949.

    Google Scholar 

  325. Millman, R.S. and Parker, G.D.: Elements of differential geometry, Prentice Hall, 1977, p. 39.

    Google Scholar 

  326. Struik, D.J.: Lectures on classical differential geometry, Dover, reprint, 1988, p. 14.

    Google Scholar 

  327. Millman, R.S. and Parker, G.D.: Elements of differential geometry, Prentice Hall, 1977, p. 138.

    Google Scholar 

  328. Berger, M. and Gostiaux, B.: Differential geometry: manifolds, curves, and surfaces, Springer, 1988 (translated from the French).

    Google Scholar 

  329. Millman, R.S. and Parker, G.D.: Elements of differential geometry, Prentice Hall, 1977, pp. 31-35.

    Google Scholar 

  330. Struik, D.J.: Lectures on classical differential geometry, Dover, reprint, 1988, p. 10ff.

    Google Scholar 

  331. Millman, R.S. and Parker, G.D.: Elements of differential geometry, Prentice Hall, 1979, p. 39.

    Google Scholar 

  332. Struik, D.J.: Lectures on classical differential geometry, Dover, reprint, 1988, p. 25.

    Google Scholar 

  333. Il’in, V.A. and Poznyak, E.G.: Fundamentals of mathematical analysis, 1, Mir, 1982 (translated from the Russian).

    Google Scholar 

  334. Rashevskiı, P.K.: A course of differential geometry, Moscow, 1956 (in Russian).

    Google Scholar 

  335. Favard, J.: Cours de géométrie différentièlle locale, Gauthier-Villars, 1957.

    Google Scholar 

  336. Zalgaller, V.A.: The theory of envelopes, Moscow, 1975 (in Russian).

    Google Scholar 

  337. Hsiung, C.C.: A first course in differential geometry, Wiley, 1988, Chapt. 2, Sect. 1.4.

    Google Scholar 

  338. Ostrogradski, M.V.: Mém. Acad. Sci. St. Petersbourg. Sér. 6. Sci. Math. Phys. et Naturelles 1 (1831), 117–122.

    Google Scholar 

  339. Ostrogradski, M.V.: Mém. Acad. Sci. St. Petersbourg. Sér. 6. Sci. Math. Phys. et Naturelles 1 (1838), 35–58.

    Google Scholar 

  340. Triebel, H.: Analysis and mathematical physics, Reidel, 1986, Sect. 9.3.1.

    Google Scholar 

  341. Krall, A.M.: Applied analysis, Reidel, 1986, p. 380.

    Google Scholar 

  342. Wills, A.P.: Vector analysis with an introduction to tensor analysis, Dover, reprint, 1958, p. 97ff.

    Google Scholar 

  343. Westenholz, C. von: Differential forms in mathematical physics, North-Holland, 1981, p. 286ff.

    Google Scholar 

  344. Ostrogradski, M.V.: Bull. Sci. Acad. Sci. St. Petersburg 4, no. 10-11 (1845), 145–167.

    Google Scholar 

  345. Ostrogradski, M.V.: Bull. Sci. Acad. Sci. St. Petersburg 4, no. 18-19 (1845), 286–300.

    Google Scholar 

  346. Natanson, I.P.: Theory of functions of a real variable, 1-2, F. Ungar, 1955-1961 (translated from the Russian).

    Google Scholar 

  347. Saks, S.: Theory of the integral, Hafner, 1952 (translated from the Polish).

    Google Scholar 

  348. Halmos, P.R.: Measure theory, v. Nostrand, 1950.

    Google Scholar 

  349. Royden, H.L.: Real analysis, Macmillan, 1968.

    Google Scholar 

  350. Berger, M. and Gostiaux, B.: Differential geometry: manifolds, curves and surfaces, Springer, 1988 (translated from the French).

    Google Scholar 

  351. Do Carmo, M.: Differential geometry of curves and surfaces, Prentice Hall, 1976.

    Google Scholar 

  352. Chern, S.S.: Curves and surfaces in Euclidean space, Prentice Hall, 1967.

    Google Scholar 

  353. Bonnesen, T. and Fenchel, W.: Theorie der konvexen Körper, Springer, 1934.

    Google Scholar 

  354. Bieberbach, L.: Analytische Fortsetzung, Springer, 1955.

    Google Scholar 

  355. Goluzin, G.M.: Geometric theory of functions of a complex variable, Amer. Math. Soc., 1969 (translated from the Russian).

    Google Scholar 

  356. Leont’ev, A.F.: Exponential series, Moscow, 1976 (in Russian).

    Google Scholar 

  357. Ilieff, L. [L. Il’ev]: Analytische Nichtfortsetzbarkeit und Überkonvergenz einiger Klassen von Potenzreihen, Deutsch. Verlag Wissenschaft., 1960 (translated from the Russian).

    Google Scholar 

  358. Mal’tsev, A.I.: Foundations of linear algebra, Freeman, 1963 (translated from the Russian).

    Google Scholar 

  359. Palamodov, V.V.: ‘Systems of linear differential equations’, Progress in Math. 10 (1971), 1–36. (Itogi Nauk. Mat. Anal. (1969), 5-37)

    Google Scholar 

  360. Segre, B.: ‘Introduction to Galois geometries’, Atti Accad. Naz. Lincei 8 (1967), 133–236.

    MathSciNet  MATH  Google Scholar 

  361. Segre, B.: ‘Ovals in a finite projective plane’, Canad. J. Math. 7 (1955), 414–416.

    MathSciNet  MATH  Google Scholar 

  362. Tits, J.: ‘Ovoids à translations’, Rend. Mat. e Appl. 21 (1962), 37–59.

    MathSciNet  MATH  Google Scholar 

  363. Barlotti, A.: ‘Un’ estenzione del teorema di Segre-Kustaanheimo’, Boll. Un. Mat. Ital. (3) 10 (1955), 498–506.

    MathSciNet  MATH  Google Scholar 

  364. Pagne, S.E. and Thas, J.A.: Finite generalized quadrangles, Pitman, 1984.

    Google Scholar 

  365. Mason, G. and Shult, E.E.: ‘The Klein correspondence and the ubiquity of certain translation planes’, Geom. Dedicata 21 (1986), 29–50.

    MathSciNet  Google Scholar 

  366. Shult, E.E.: ‘Nonexistence of ovoids in Ω (10, F3),’ J. Comb. Theory, Ser. A 51 (1989), 250–257.

    MathSciNet  MATH  Google Scholar 

  367. Kantor, W.M.: ‘Ovoids and translation planes’, Canad. J. Math. 34 (1982), 1195–1207.

    MathSciNet  MATH  Google Scholar 

  368. Hirschfeld, J.W.P.: Finite projective spaces of three dimensions, Clarendon, 1985, Chapt. 16.

    Google Scholar 

Download references

Authors

Editor information

Michiel Hazewinkel

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hazewinkel, M. (1991). O. In: Hazewinkel, M. (eds) Encyclopaedia of Mathematics. Encyclopaedia of Mathematics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1237-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1237-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8236-7

  • Online ISBN: 978-94-015-1237-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics