Skip to main content
Log in

Mean dimension of \({\mathbb{Z}^k}\)-actions

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Mean dimension is a topological invariant for dynamical systems that is meaningful for systems with infinite dimension and infinite entropy. Given a \({\mathbb{Z}^k}\)-action on a compact metric space X, we study the following three problems closely related to mean dimension.

  1. (1)

    When is X isomorphic to the inverse limit of finite entropy systems?

  2. (2)

    Suppose the topological entropy \({h_{\rm top}(X)}\) is infinite. How much topological entropy can be detected if one considers X only up to a given level of accuracy? How fast does this amount of entropy grow as the level of resolution becomes finer and finer?

  3. (3)

    When can we embed X into the \({\mathbb{Z}^k}\)-shift on the infinite dimensional cube \({([0,1]^D)^{\mathbb{Z}^k}}\)?

These were investigated for \({\mathbb{Z}}\)-actions in Lindenstrauss (Inst Hautes Études Sci Publ Math 89:227–262, 1999), but the generalization to \({\mathbb{Z}^k}\) remained an open problem. When X has the marker property, in particular when X has a completely aperiodic minimal factor, we completely solve (1) and a natural interpretation of (2), and give a reasonably satisfactory answer to (3).

A key ingredient is a new method to continuously partition every orbit into good pieces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslander J.: Minimal Flows and Their Extensions. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  2. Downarowicz T.: Minimal models for noninvertible and not uniquely ergodic systems. Israel Journal of Mathematics 156, 93–110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gromov M.: Topological invariants of dynamical systems and spaces of holomorphic maps: I. Mathematical Physics Analysis And Geometry 2, 323–415 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gutman Y.: Embedding \({\mathbb{Z}^k}\)-actions in cubical shifts and \({\mathbb{Z}^k}\)-symbolic extensions. Ergodic Theory and Dynamical Systems 31, 383–403 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Gutman. Mean dimension and Jaworski-type theorems. Proceedings of the London Mathematical Society (to appear). arXiv:1208.5248.

  6. Y. Gutman. Embedding topological dynamical systems with periodic points in cubical shifts. Ergodic Theory and Dynamical Systems (to appear).

  7. Gutman Y., Tsukamoto M.: Mean dimension and a sharp embedding theorem: extensions of aperiodic subshifts. Ergodic Theory and Dynamical Systems 34, 1888–1896 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hurewicz W., Wallman H.: Dimension Theory. Princeton University Press, Princeton (1941)

    MATH  Google Scholar 

  9. A. Jaworski. Ph.D. Thesis, University of Maryland (1974).

  10. Kakutani S.: A proof of Beboutov’s theorem. Journal of Differential Equations 4, 194–201 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  11. Krieger W.: On the subsystems of topological Markov chains. Ergodic Theory and Dynamical Systems 2, 195–202 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krieger F.: Minimal systems of arbitrary large mean topological dimension. Israel Journal of Mathematics 172, 425–444 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li H.: Sofic mean dimension. Advances in Mathematics 244, 570–604 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lightwood S.J.: Morphisms from non-periodic \({\mathbb{Z}^2}\)-subshifts. I. Constructing embeddings from homomorphisms. Ergodic Theory and Dynamical Systems 23, 587–609 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lightwood S.J.: Morphisms from non-periodic \({\mathbb{Z}^2}\) subshifts. II. Constructing homomorphisms to square-filling mixing shifts of finite type. Ergodic Theory and Dynamical Systems 24, 1227–1260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lindenstrauss E.: Lowering topological entropy. Journal d’Analyse Mathématique 67, 231–267 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lindenstrauss E.: Mean dimension, small entropy factors and an embedding theorem. Inst. Hautes Études Sci. Publ. Math. 89, 227–262 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lindenstrauss E., Tsukamoto M.: Mean dimension and an embedding problem: an example. Israel Journal of Mathematics 199, 573–584 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lindenstrauss E., Weiss B.: Mean topological dimension. Israel Journal of Mathematics 115, 1–24 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ornstein D.S., Weiss B.: Entropy and isomorphism theorems for actions of amenable groups. Journal dAnalyse Mathématique, 48, 1–141 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shub M., Weiss B.: Can one always lower topological entropy?. Ergodic Theory and Dynamical Systems 11, 535–546 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Tsukamoto.

Additional information

Y.G. was partially supported by the Marie Curie grant PCIG12-GA-2012-334564 and by the National Science Center (Poland) grant 2013/08/A/ST1/00275. E.L. acknowledges the support of ERC AdG Grant 267259. M.T. was supported by Grant-in-Aid for Young Scientists (B) 25870334 from JSPS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutman, Y., Lindenstrauss, E. & Tsukamoto, M. Mean dimension of \({\mathbb{Z}^k}\)-actions. Geom. Funct. Anal. 26, 778–817 (2016). https://doi.org/10.1007/s00039-016-0372-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-016-0372-9

Keywords and phrases

Mathematics Subject Classification

Navigation