Skip to main content

Part of the book series: NATO ASI Series ((ASEN2,volume 26))

Abstract

This paper presents evidence that genotoxic and carcinogenic effects of certain transition metals are associated with oxidative damage to DNA and nuclear proteins. The metals, including Ni, Cr, and Co, are capable of causing promutagenic lesions, such as DNA base modifications, inter- and intra-molecular crosslinks of DNA and proteins, DNA strand breaks, rearrangements, and depurination. The underlying mechanisms involve generation of various kinds of active oxygen and other highly reactive species from metal-catalyzed redox reactions of O2, H2O2, lipid peroxides, and other cellular substrates, and their attack on cell nucleus. Metal-mediated damage of other tissue and cellular components, resulting in inflammation, lipid peroxidation, suppression of cellular antioxidant defenses, and impairment of DNA repair, may also contribute to those mechanisms. Data revealing the oxidative character of metal-induced promutagenic DNA damage are particularly strong for two most powerful human metal carcinogens, nickel and chromium. However, without excluding various pathogenic effects caused by non-redox interactions, oxidative damage tends to take the leading role in explaining the mechanisms of carcinogenicity of cobalt and certain other metals as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bryan, S.E. (1981) Heavy metals in the cell’s nucleus, in G.L. Eichhorn and L.G. Marzilli (eds.), Metal Ions in Genetic Information Transfer, Elsevier, New York, pp. 87–101.

    Google Scholar 

  2. Berg, J.M. (1986) Potential metal-binding domains in nucleic acid binding proteins, Science 232, 485–487.

    Article  CAS  Google Scholar 

  3. Leonard, A. (1986) Chromosome damage in individuals exposed to heavy metals, in H. Sigel (ed.), Metal Ions in Biological Systems, Vol. 20, Marcel Dekker, New York, pp. 229–258.

    Google Scholar 

  4. Sunderman, F.W., Jr. and Barber, A.M. (1988) Finger-loops, oncogenes, and metals, Ann. Clin. Lab. Sci. 18, 267–288.

    CAS  Google Scholar 

  5. Sunderman, F.W., Jr., (1984) Recent advances in metal carcinogenesis, Ann. Clin. Lab. Sci. 14, 93–122.

    CAS  Google Scholar 

  6. Sunderman, F.W., Jr. (1986) Carcinogenicity and mutagenicity of some metals and their compounds, in International Agency for Research on Cancer Scientific Publications, Vol. 71, IARC, Lyon, pp. 17–43.

    Google Scholar 

  7. Sunderman, F.W., Jr. (1989) Mechanisms of nickel carcinogenesis, Scand. J. Work Environ. Health 15, 1–12.

    Article  CAS  Google Scholar 

  8. Costa, M. (1991) Molecular mechanisms of nickel carcinogenesis, Annu. Rev. Pharmacol Toxicol 31, 321–327.

    Article  CAS  Google Scholar 

  9. Oleinick, N.L., Chiu, S., Ramakrishnan N., and Xue, L. (1987) The formation, identification, and significance of DNA-protein cross-links in mammalian cells, Brit. J. Cancer 55 (Suppl VIII), 135–140.

    Article  CAS  Google Scholar 

  10. Dizdaroglu, M. (1991) Chemical determination of free radical-induced damage to DNA, Free. Rad. Biol. Med. 10, 225–242.

    Article  CAS  Google Scholar 

  11. Breimer, L.H. (1990) Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis: The role of DNA base damage, Mol. Carcinogen. 3, 188–197.

    Article  CAS  Google Scholar 

  12. Angelov, D., Berger, M., Cadet, J., et al: (1991) Comparison of the effects of high-power U.V.-laser pulses and ionizing radiation on nucleic acids and related compounds, Radiat. Phys. Chem. 37, 717–727.

    CAS  Google Scholar 

  13. Kasprzak, K.S. (1995) Possible role of oxidative damage in metal-induced carcinogenesis, Cancer Invest. 13, 411–430.

    Article  CAS  Google Scholar 

  14. Snow, E.T. (1992) Metal carcinogenesis: Mechanistic implications, Pharmac. Ther. 53, 31–65.

    Article  CAS  Google Scholar 

  15. Standeven, A.M. and Wetterhahn, K.E. (1991) Is there a role for reactive oxygen species in the mechanism of chromium(VI) carcinogenesis? Chem. Res. Toxicol 4, 616–625.

    Article  CAS  Google Scholar 

  16. Spiro, T.G. (1980) Metal Ion Activation of Dioxygen, J.Wiley & Sons, New York.

    Google Scholar 

  17. Sawyer, D.T. (1987) The chemistry and activation of dioxygen species (O2, O2 •, and HOOH) in biology, in A.E. Martell and D.T. Sawyer (eds.), Oxygen Complexes and Oxygen Activation by Transition Metals, Plenum Press, New York, pp. 131–148.

    Google Scholar 

  18. Kawanishi, S., Inoue, S., and Yamamoto, K. (1989) Hydroxyl radical and singlet oxygen production and DNA damage induced by carcinogenic metal compounds and hydrogen peroxide, Biol Trace. Elem. Res. 21, 367–372.

    Article  CAS  Google Scholar 

  19. Yamamoto, K. and Kawanishi, S. (1989) Hydroxyl free radical is not the main active species in site-specific DNA damage induced by copper(II) ion and hydrogen peroxide, J. Biol. Chem. 264, 15435–15440.

    CAS  Google Scholar 

  20. Wink, D.A., Wink, C.B., Nims, R.W., and Ford, P.C. (1994) Oxidizing intermediates generated in the Fenton reagent: Kinetic arguments against intermediacy of the hydroxyl radical, Environ. Health Perspect. 102 (Suppl. 3), 11–15.

    CAS  Google Scholar 

  21. Stadtman, E.R. and Berlett, B.S. (1991) Fenton chemistry: Amino acid oxidation, J. Biol. Chem. 266, 17201–17211.

    CAS  Google Scholar 

  22. Hamazaki, S., Okada, S., Li, J.L., Toyokuni, S., and Midorikawa, O. (1989) Oxygen reduction and lipid peroxidation by iron chelates with special reference to ferric-nitrilotriaeetate, Arch. Biochem. Biophys. 272, 10–17.

    Article  CAS  Google Scholar 

  23. Nassi-Calo, L., Mello-Filho, A.C., and Meneghini, R. (1989) o-Phenanthroline protects mammalian cells from hydrogen peroxide-induced gene mutation and morphological transformation, Carcinogenesis 10, 1055–1057.

    Article  CAS  Google Scholar 

  24. Loeb, L.A., James, E.A., Waltersdorph, A.M., and Klebanoff, S.J. (1988) Mutagenesis by the autoxidation of iron with isolated DNA, Proc. Natl Acad. Sci. USA 85, 3918–3922.

    Article  CAS  Google Scholar 

  25. Inoue, S. and Kawanishi, S. (1987) Hydroxyl radical production and human DNA damage induced by ferric nitrilotriacetate and hydrogen peroxide, Cancer Res. 47, 6522–6527.

    CAS  Google Scholar 

  26. Shi, X., Sun, X., Gannett, P.M., and Dalai, N.S. (1992) Deferoxamine inhibition of Cr(V)-mediated radical generation and deoxyguanine hydroxylation: ESR and HPLC evidence, Arch. Biochem. Biophys. 293, 281–286.

    Article  CAS  Google Scholar 

  27. Moorhouse, C.P., Halliwell, B., Grootveld, M., and Gutteridge, J.M.C. (1985) Cobalt(II) ion as a promoter of hydroxyl radical and possible ‘crypto-hydroxyl’ radical formation under physiological conditions: Differential effects of hydroxyl radical scavengers, Biochem. Biophys. Acta. 843, 261–268.

    Article  CAS  Google Scholar 

  28. Kasprzak, K.S. and Bare, R.M. (1989) In vitro polymerization of histones by carcinogenic nickel compounds, Carcinogenesis 10, 621–624.

    Article  CAS  Google Scholar 

  29. Kasprzak, K.S. and Sunderman, F.W., Jr. (1977) Mechanisms of dissolution of nickel subsulfide in rat serum, Res. Commun. Chem. Pathol. Pharmacol. 16, 95–108.

    CAS  Google Scholar 

  30. Shi, X., Dalai, N.S., and Kasprzak, K.S. (1994) Enhanced generation of hydroxyl and sulfur trioxide anion radicals from oxidation of sodium sulfite, nickel(II) sulfite, and nickel subsulfide in the presence of nickel(II) complexes, Environ. Health. Perspect. 102 (Suppl. 3), 91–96.

    CAS  Google Scholar 

  31. Kasprzak, K.S., North, S.L., and Keefer, L.K. (1991) Deamination of 5-methyl-2′-deoxycytidine with carcinogenic nickel subsulfide and its metabolite nickel(II) sulfite, Proc. Am. Assoc. Cancer. Res. 32, 108.

    Google Scholar 

  32. Ito, K. and Kawanishi, S. (1991) Site-specific fragmentation and modification of albumin by sulfite in the presence of metal ions or peroxidase/H2O2: Role of sulfate radical, Biochem. Biophys. Res. Commun. 176, 1306–1312.

    Article  CAS  Google Scholar 

  33. Kasprzak, K.S. and Hernandez, L. (1989) Enhancement of hydroxylation and deglycosylation of 2 ′-deoxyguanosineby carcinogenic nickel compounds, Cancer Res. 49, 5964–5968.

    CAS  Google Scholar 

  34. Sunderman, F.W., Jr. (1986) Metals and lipid peroxidation, Acta Pharmacol. Toxicol. 59 (Suppl VII), 248–255.

    Article  CAS  Google Scholar 

  35. Patel, U., Bhimani, R., and Frenkel, K. (1992) Mechanism of mutagenicity by 5-hydroperoxymethyl-2′-deoxyuridine, an intermediate product of ionizing radiation, in bacteria, Mutat. Res. 283, 145–156.

    Article  CAS  Google Scholar 

  36. Wetterhahn, K.E., Hamilton, J.W., Aiyar, J., Borges, K.M., and Floyd, R. (1989) Mechanisms of chromium(VI) carcinogenesis. Reactive intermediates and effect on gene expression, Biol. Trace Elem. Res. 21, 405–411.

    Article  CAS  Google Scholar 

  37. Lancaster, J.R., Jr. (ed.) (1988) The Bioinorganic Chemistry of Nickel, VCH, New York.

    Google Scholar 

  38. Bossu, F.P., Paniago, E.B., Margerum, D.W., Kirksey, S.T., and Kurtz, J.L. (1978) Trivalent nickel catalysis of the autoxidation of nickel(II) tetraglycine, Inorg. Chem. 17, 1034–1042.

    Article  CAS  Google Scholar 

  39. Shi, X., Dalai, N.S. and Kasprzak, K.S. (1993) Generation of free radicals in reactions of Ni(II)-thiol complexes with molecular oxygen and model lipid hydroperoxides, J. Inorg. Biochem. 50, 211–225.

    Article  CAS  Google Scholar 

  40. Nieboer, E., Maxwell, R.I., Rosetto, F.E., Stafford, A.R., and Stetsko, P.I. (1986) Concepts in nickel carcinogenesis, in A.V. Xavier (ed.), Frontiers in Bioinorganic Chemistry, VCH, Heidelberg, pp. 142–151.

    Google Scholar 

  41. Inoue, S. and Kawanishi, S. (1989) ESR evidence for superoxide, hydroxyl radicals, and singlet oxygen produced from hydrogen peroxide and nickel(II) complex of glycylglycyl-L-histidine, Biochem. Biophys. Res. Commun. 159, 445–451.

    Article  CAS  Google Scholar 

  42. Torreilles, J. and Guerin, M.C. (1990) Nickel(II) as a temporary catalyst for hydroxyl radical generation, FEBS Lett. 272, 58–60.

    Article  CAS  Google Scholar 

  43. Cotelle, N., Tremolieres, E., Bernier, J.L., Catteau, J.P., and Henichart, J.P. (1992) Redox chemistry of complexes of nickel(II) with some biologically important peptides in the presence of reduced oxygen species. An ESR study, J. Inorg. Chem. 46, 7–15.

    CAS  Google Scholar 

  44. Nieboer, E., Stetsko, P.I., and Hin, P.Y. (1984) Characterization of the Ni(III)/Ni(II) redox couple for the nickel(II) complex of human serum albumin, Ann. Clin. Lab. Sci. 14, 409–413.

    Google Scholar 

  45. Shi, X., Dalai, N.S., and Kasprzak, K.S. (1992) Generation of free radicals from lipid hydroperoxides by Ni2+ in the presence of oligopeptides, Arch. Biochem. Biophys. 299, 154–162.

    Article  CAS  Google Scholar 

  46. Datta, A.K., Shi, X., and Kasprzak, K.S. (1993) Effect of carnosine, homocarnosine, and anserine on hydroxylation of the guanine moiety in 2 ′-deoxyguanosine, DNA, and nucleohistonewith hydrogen peroxide in the presence of nickel(II), Carcinogenesis 14, 417–422.

    Article  CAS  Google Scholar 

  47. IARC Monographs on the Evaluation of Carcinogenic Risk to Humans, Vol. 49 (1990) Chromium, Nickel and Welding, IARC, Lyon.

    Google Scholar 

  48. Aiyar, J., Berkovits, H.J., Floyd, R.A., and Wetterhahn, K.E. (1991) Reaction of chromium(VI) with glutathione or with hydrogen peroxide: Identification of reactive intermediates and their role in chromium(VI)-induced DNA damage, Environ. Health Perspect. 92, 53–62.

    Article  CAS  Google Scholar 

  49. Dillon, C.T., Lay, P.A., Bonin, A.M., Dixon, N.E., Collins, T.J., and Kostka, K.L. (1993) In vitro DNA damage and mutations induced by a macrocyclic tetraamide chromium(V) complex: Implications for the role of Cr(V) peptide complexes in chromium-induced cancers, Carcinogenesis 14, 1875–1880.

    Article  CAS  Google Scholar 

  50. Shi, X., Dalai, N.S., and Kasprzak, K.S. (1993) Generation of free radicals from hydrogen peroxide and lipid hydroperoxides in the presence of Cr(III), Arch. Biochem. Biophys. 302, 294–299.

    Article  CAS  Google Scholar 

  51. Salnikow, K., Zhitkovich, A., and Costa, M. (1992) Analysis of the binding sites of chromium to DNA and protein in vitro and in intact cells, Carcinogenesis 13, 2341–2346.

    Article  CAS  Google Scholar 

  52. Goodgame, D.M.L. and Joy, A.M. (1986) Relatively long-lived chromium(V) species are produced by the action of glutathione on carcinogenic chromium(VI), J. Inorg. Biochem. 26, 219–224.

    Article  CAS  Google Scholar 

  53. Sugiyama, M., Tsuzuki, K., and Ogura, R. (1991) Effect of ascorbic acid on DNA damage, cytotoxicity, glutathione reductase, and formation of paramagnetic chromium in Chinese hamster V-79 cells treated with sodium chromate(VI), J. Biol. Chem. 266, 3383–3386.

    CAS  Google Scholar 

  54. Shi, X. and Dalai, N.S. (1990) One-electron reduction of chromate by NADPH-dependent glutathione reductase, J. Inorg. Biochem. 40, 1–12.

    Article  CAS  Google Scholar 

  55. Kasprzak, K.S., Zastawny, T.H., North, S.L., Riggs, C.W., Diwan, B.A., Rice, J.M., and Dizdaroglu, M. (1994) Oxidative DNA base damage in renal, hepatic, and pulmonary chromatin of rats after intraperitoneal injection of cobalt(II) acetate, Chem. Res. Toxicol. 7, 329–335.

    Article  CAS  Google Scholar 

  56. Nackerdien, Z., Kasprzak, K.S., Rao, G., Halliwell, B., and Dizdaroglu, M. (1991) Nickel(II)-and cobalt(II)-dependent damage by hydrogen peroxide to the DNA bases in isolated human chromatin, Cancer Res. 51, 5837–5842.

    CAS  Google Scholar 

  57. Shi, X., Dalai, N.S., and Kasprzak, K.S. (1993) Generation of free radicals from model lipid hydroperoxides and H2O2 by Co(II) in the presence of cysteinyl and histidyl chelators, Chem. Res. Toxicol. 6, 277–283.

    Article  CAS  Google Scholar 

  58. Beyersmann, D. and Hartwig, A. (1992) The genetic toxicology of cobalt, Toxicol. Appl. Pharmacol. 115, 137–145.

    Article  CAS  Google Scholar 

  59. Hanna, P.M., Kadiiska, M.B., and Mason, R.P. (1992) Oxygen-derived free radical and active oxygen complex formation from cobalt(II) chelates in vitro, Chem. Res. Toxicol. 5, 109–115.

    Article  CAS  Google Scholar 

  60. Bartoli, G.M., Galeotti, T., and Azzi, A. (1977) Production of Superoxide anions and hydrogen peroxide in Ehrlich ascites tumour cell nuclei, Biochim. Biophys. Acta. 497, 622–626.

    Article  CAS  Google Scholar 

  61. Peskin, A.V. and Shlyahova, L. (1986) Cell nuclei generate DNA-nicking Superoxide radicals, FEBS Lett. 194, 317–321.

    Article  CAS  Google Scholar 

  62. Szatrowski, T.P. and Nathan, C.F. (1991) Production of large amounts of hydrogen peroxide by human tumor cells, Cancer Res. 51, 794–798.

    CAS  Google Scholar 

  63. Huang, X., Frenkel, K., Klein, C.B., and Costa, M. (1993) Nickel induces increased oxidants in intact cultured mammalian cells as detected by dichlorofluorescein fluorescence, Toxicol. Appl. Pharmacol. 120, 29–36.

    Article  CAS  Google Scholar 

  64. von Sonntag, C. (1987) The Chemical Basis of Radiation Biology, Taylor and Francis, London.

    Google Scholar 

  65. Dizdaroglu, M. (1992) Oxidative damage to DNA in mammalian chromatin, Mutat. Res. 275, 331–342.

    Article  CAS  Google Scholar 

  66. Dizdaroglu, M. (1993) Quantitative determination of oxidative base damage in DNA by stable isotope-dilution mass spectrometry, FEBS Lett. 315, 1–6.

    Article  CAS  Google Scholar 

  67. Nakae, D., Mizumoto, Y., Kobayashi, E., Noguchi, O., and Konishi, Y. (1995) Improved genomic/nuclear DNA extraction for 8-hydroxydeoxyguanosine analysis of small amounts of rat liver tissue, Cancer Lett. 97, 233–239.

    Article  CAS  Google Scholar 

  68. Douki, T., Delatour, T., Bianchini, F., and Cadet, J. (1996) Observation and prevention of an artefactual formation of oxidized DNA bases and nucleosides in the GC-EIMS method, Carcinogenesis 17, 347–353.

    Article  CAS  Google Scholar 

  69. Dizdaroglu, M., Rao, G., Halliwell, B., and Gajewski, E. (1991) Damage to the DNA bases in mammalian chromatin by hydrogen peroxide in the presence of ferric and cupric ions, Arch. Biochem. Biophys. 285, 317–324.

    Article  CAS  Google Scholar 

  70. Kasprzak, K.S., Misra, M., Rodriguez, R.E., and North, S.L. (1991) Nickel-induced oxidation of renal DNA guanine residues in vivo and in vitro, Toxicologist 11, 233.

    Google Scholar 

  71. Kasprzak, K.S., Diwan, B.A., Rice, J.M., Misra, M., Riggs, C.W., Olinski, R., and Dizdaroglu, M. (1992) Nickel(II)-mediated oxidative DNA base damage in renal and hepatic chromatin of pregnant rats and their fetuses: Possible relevance to carcinogenesis, Chem. Res. Toxicol. 5, 809–815.

    Article  CAS  Google Scholar 

  72. Misra, M., Olinski, R., Dizdaroglu, M., and Kasprzak, K.S. (1993) Enhancement by L-histidine of nickel(II)-induced DNA-protein crosslinking and oxidative DNA base damage in the rat kidney, Chem. Res. Toxicol. 6, 33–37.

    Article  CAS  Google Scholar 

  73. Kasprzak, K.S., Diwan, B.A., Konishi, N., Misra, M., and Rice, J.M. (1990) Initiation by nickel acetate and promotion by sodium barbital of renal cortical epithelial tumors in male F344 rats, Carcinogenesis 11, 647–652.

    Article  CAS  Google Scholar 

  74. Umemura, T., Sai, K., Takagi, A., Hasegawa, R., and Kurokawa, Y. (1991) The effects of exogenous glutathione and cysteine on oxidative stress induced by ferric nitrilotriacetate, Cancer Lett. 58, 49–56.

    Article  CAS  Google Scholar 

  75. Borges, K.M. and Wetterhahn, K.E. (1989) Chromium cross-links glutathione and cysteine to DNA, Carcinogenesis 10, 2165–2168.

    Article  CAS  Google Scholar 

  76. Wedrychowski, A., Schmidt, W.N., and Hnilica, L.S. (1986) The in vivo cross-linking of proteins and DNA by heavy metals, J. Biol. Chem. 261, 3370–3376.

    CAS  Google Scholar 

  77. Chang, J., Watson, W., Randerath, E., and Randerath, K. (1993) Bulky DNA adduct formation induced by Ni(II) in vitro and in vivo as assayed by 32P-postlabeling, Mutat. Res. 291, 147–159.

    Article  CAS  Google Scholar 

  78. Zhuang, Z., Huang, X., and Costa, M. (1994) Protein oxidation and amino acid-DNA crosslinking by nickel compounds in intact cultured cells, Toxicol. Appl. Pharmacol. 126, 319–325.

    Article  CAS  Google Scholar 

  79. Datta, A.K., Misra, M., North, S.L., and Kasprzak, K.S. (1992) Enhancement by nickel(II) and L-histidine of 2′-deoxyguanosine oxidation with hydrogen peroxide, Carcinogenesis 13, 283–287.

    Article  CAS  Google Scholar 

  80. Miller, C. A., III and Costa, M. (1989) Immunological detection of DNA-protein complexes induced by chromate, Carcinogenesis 10, 667–672.

    Article  CAS  Google Scholar 

  81. Dizdaroglu, M. and Simic, M.G. (1984) Radiation-induced crosslinking of cytosine, Radiat. Res. 100, 41–46.

    Article  CAS  Google Scholar 

  82. Dizdaroglu, M. and Simic, M.G. (1984) Radiation-induced formation of thymine-thymine crosslinks, Int. J. Radiat. Biol. 46, 241–246.

    Article  CAS  Google Scholar 

  83. Tkeshelashvili, L.K., Reid, T.M., McBride, T.J., and Loeb, L.A. (1993) Nickel induces a signature mutation for oxygen free radical damage, Cancer Res. 53, 4172–4174.

    CAS  Google Scholar 

  84. Kawanishi, S., Inoue, S., and Yamamoto, K. (1989) Site-specific DNA damage by nickel(II) ion in the presence of hydrogen peroxide, Carcinogenesis 12, 2231–2235.

    Article  Google Scholar 

  85. Mack, D.P. and Dervan, P.B. (1992) Sequence-specific oxidative cleavage of DNA by a designated metalloprotein, nickel(II)GGH(Hinl39-190), Biochemistry 31, 9399–9405.

    Article  CAS  Google Scholar 

  86. Cheng, C.C., Rokita, S.E., and Burrows, C.J. (1993) Nickel(III)-promoted DNA cleavage with ambient dioxygen, Angew. Chem. Int. Ed. Engl. 32, 277–278.

    Article  Google Scholar 

  87. Schaaper, R.M., Koplitz, R.M., Tkeshelashvili, L.K., and Loeb, L.A. (1987) Metal-induced lethality and mutagenesis: Possible role of apurinic intermediates, Mutat Res. 177, 179–188.

    Article  CAS  Google Scholar 

  88. Hamilton-Koch, W., Snyder, R.D., and Lavelle, J.M. (1986) Metal-induced DNA damage and repair in human diploid fibroblasts and Chinese hamster ovary cells, Chem. Biol. Interact. 59, 17–28.

    Article  CAS  Google Scholar 

  89. Littlefield, N.A., Fullerton, F.R., and Poirier, L.A. (1991) Hydroxylation and deglycosylation of 2′-deoxyguanosinein the presence of magnesium and nickel, Chem. Biol. Interact. 79, 217–228.

    Article  CAS  Google Scholar 

  90. Moraes, E.C., Keyse, S.M., and Tyrrell, R.M. (1990) Mutagenesis by hydrogen peroxide treatment of mammalian cells: A molecular analysis, Carcinogenesis 11, 283–293.

    Article  CAS  Google Scholar 

  91. McBride, T.J., Preston, B.D., and Loeb, L.A. (1991) Mutagenic spectrum resulting from DNA damage by oxygen free radicals, Biochemistry 30, 207–213.

    Article  CAS  Google Scholar 

  92. Tkeshelashvili, L.K., McBride, T.J., Spence, K., and Loeb, L.A. (1991) Mutation spectrum of copper-induced DNA damage, J. Biol. Chem. 266, 6401–6406.

    CAS  Google Scholar 

  93. Reid, T.M. and Loeb, L.A. (1993) Tandem double CC → TT mutations are produced by reactive oxygen species, Proc. Natl. Acad. Sci. USA 90, 3904–3907.

    Article  CAS  Google Scholar 

  94. Cheng, K.C., Cahill, D.S., Kasai, H., Nishimura, S., and Loeb, L.A. (1992) 8-Hydroxy-guanine, an abundant form of oxidative DNA damage, causes G → T and A → C substitutions, J. Biol. Chem. 267, 166–172.

    CAS  Google Scholar 

  95. Wood, M.L., Esteve, A., Morningstar, M.L., Kuziemko, G.M., and Essigmann, J.M. (1992) Genetic effects of oxidative DNA damage: Comparative mutagenesis of 7, 8-dihydro-8-oxoguanine and 7, 8-dihydro-8-oxoadenine in Escherichia coli. Nucl. Acid Res. 20, 6023–6032.

    CAS  Google Scholar 

  96. Kamiya, H., Miura, K., Ishikawa, H., Inoue, H., Nishimura, S., and Ohtsuka, E. (1992) c-Ha-ras containing 8-hydroxyguanine at codon 12 induces point mutations at the modified and adjacent positions, Cancer Res. 52, 3483–3485.

    CAS  Google Scholar 

  97. Higinbotham, K.G., Rice, J.M., Diwan, B.A., Kasprzak, K.S., Reed, C.D., and Perantoni, A. (1992) GGT to GTT transversions in codon 12 of the K-ras oncogene in rat renal sarcomas induced with nickel subsulfide or nickel subsulfide/iron are consistent with oxidative damage to DNA, Cancer Res. 52, 4747–4751.

    CAS  Google Scholar 

  98. Harty, L.C., Caporaso, N., Travis, W., Guinee, D., Bennett, W.P., Jett, J., Colby, T.V., Tazelaar, H., Trastek, V., Pairolero, P., Liotta, L., and Harris, C.C. (1995) P53 mutations and occupation in a surgical series of lung cancers, Proc. Am. Assoc. Cancer. Res. 36, 279.

    Google Scholar 

  99. Shirname-More, L., Rossman, T.G., Troll, W., Teebor, G.W., and Frenkel, K. (1987) Genetic effects of 5-hydroxymethyl-2 ′-deoxyuridine, a product of ionizing radiation, Mutat. Res. 178, 177–186.

    Article  CAS  Google Scholar 

  100. Basu, A.K., Loechler, E.L., Leadon, S.A., and Essigman, J.M. (1989) Genetic effects of thymine glycol: Site-specific mutagenesis and molecular modeling studies, Proc. Natl. Acad. Sci. USA 84, 7677–7681.

    Article  Google Scholar 

  101. Kamiya, H., Ueda, T., Ohgi, T., Matsukage, A., and Kasai, H. (1995) Misincorporation of dAMP opposite 2-hydroxyadenine, an oxidative form of adenine, Nucl. Acid Res. 23, 761–766.

    Article  CAS  Google Scholar 

  102. Feig, D.I., Sowers, L.C., and Loeb, L.A. (1994) Reverse chemical mutagenesis: Identification of the mutagenic lesions resulting from reactive oxygen species-mediated damage to DNA, Proc. Natl. Acad. Sci. USA 91, 6609–6613.

    Article  CAS  Google Scholar 

  103. Ono, T., Negishi, K., and Hayatsu, H. (1995) Spectra of superoxide-induced mutations in the lacl gene of a wild type and a MutM strain of Escherichia coli K-12, Proc. Am. Assoc. Cancer. Res. 36, 161.

    Google Scholar 

  104. Runger, T.M. and Kraemer, K.H. (1989) Joining of linear plasmid DNA is reduced and error-prone in Bloom’s syndrome cells, EMBO J. 8, 1419–1425.

    CAS  Google Scholar 

  105. Chiocca, S.M., Sterner, D.A., Biggart, N.W., and Murphy, E.C., Jr. (1991) Nickel mutagenesis: Alteration of the MuSVts110 thermosensitive splicing phenotype by a nickel-induced duplication of the 3′ splice site, Mol. Carcinogen. 4, 61–71.

    Article  CAS  Google Scholar 

  106. Mee, L.K. and Adelstein, S.J. (1981) Predominance of core histones in formation of DNA-protein crosslinks in γ-irradiated chromatin, Proc. Natl. Acad. Sci. USA 78, 2194–2198.

    Article  CAS  Google Scholar 

  107. Mee, L.K. and Adelstein, S.J. (1987) Radiation damage to histone H2A by the primary aqueous radicals, Radiat. Res. 110, 155–160.

    Article  CAS  Google Scholar 

  108. Bal, W., Lukszo, J., Jezowska-Bojczuk, M., and Kasprzak, K.S. (1995) Interactions of nickel(II) with histones. Stability and solution structure of complexes with CH3CO-Cys-Ala-Ile-His-NH2, a putative metal binding sequence of histone H3, Chem. Res. Toxicol. 8, 683–692.

    Article  CAS  Google Scholar 

  109. Bal, W., Lukszo, J., and Kasprzak, K.S. (1996) Interactions of nickel(II) with histones. Enhancement of 2 ′-deoxyguanosineoxidation by Ni(II) complexes with CH3CO-Cys-Ala-Ile-Hi-NH2, a putative metal binding sequence of histone H3, Chem. Res. Toxicol. 9, 535–540.

    Article  CAS  Google Scholar 

  110. Grollman, A.P. and Moriya, M. (1993) Mutagenesis by 8-oxoguanine: An enemy within, Trends Genetics 9, 246–249.

    Article  CAS  Google Scholar 

  111. Bessho, T., Roy, R., Yamamoto, K., Kadai, H., Nishimura, S., Tano, K., and Mitra, S. (1993) Repair of 8-hydroxyguanine in DNA by mammalian N-methylpurine-DNA glycosylase, Proc. Natl. Acad. Sci. USA 90, 8901–8904.

    Article  CAS  Google Scholar 

  112. Mo, J.Y., Maki, H., and Sekiguchi, M. (1992) Hydrolytic elimination of a mutagenic nucleotide, 8-oxodGTP, by human 18-kilodalton protein: Sanitization of nucleotide pool, Proc. Natl. Acad. Sci. USA 89, 11021–11025.

    Article  CAS  Google Scholar 

  113. O’Connor, T.R., Graves, R.J., de Murcia, G., Castaing, B., and Laval, J. (1993) Fpg protein of Escherichia coli is a zinc finger protein whose cysteine residues have a structural and/or functional role, J. Biol. Chem. 268, 9063–9070.

    Google Scholar 

  114. Porter, D.W., Nelson, V.C., Fivash, M.J., Jr., and Kasprzak, K.S. (1996) Mechanistic studies on the inhibition by Ni(II) of 8-oxo-2’-deoxyguanosine-5′-triphosphatase(MutT), a nucleotide pool sanitizing enzyme, in J.L. Domingo (ed.), Metal Ions in Biology and Medicine, Vol. 4, John Libbey Eurotext, Paris (in press).

    Google Scholar 

  115. Hartwig, A., Schleppegrell, R., and Beyersmann, D. (1992) Interactions in nickel mutagenicity: Indirect mechanisms in genotoxicity and interference with DNA repair, in E. Merian and W. Haerdi (eds.), Metal Compounds in Environment and Life, Vol. 4, Science Reviews, Inc., Wilmington, pp. 475–480.

    Google Scholar 

  116. Lee-Chen, S.F., Wang, M.C., Yu, CT., Wu, D.R., Jan, K.Y. (1993) Nickel chloride inhibits the DNA repair of UV-treated but not methyl methanesulfonate-treated Chinese hamster ovary cells, Biol. Trace Elem. Res. 37, 39–50.

    Article  CAS  Google Scholar 

  117. Hartwig, A., Snyder, R.D., Schleppegrell, R., and Beyersmann, D. (1991) Modulation by Co(II) of UV-induced DNA repair, mutagenesis, and sister chromatid exchanges in mammalian cells, Mutat. Res. 248, 177–185.

    Article  CAS  Google Scholar 

  118. Hartwig, A. and Beyersmann, D. (1989) Comutagenicity and inhibition of DNA repair by metal ions in mammalian cells, Biol. Trace. Elem. Res. 21, 359–365.

    Article  CAS  Google Scholar 

  119. Lee-Chen, S.F., Yu, C.T., and Jan, K.Y. (1991) Effect of arsenite on the DNA repair of UV-irradiated Chinese hamster ovary cells, Mutagenesis 7, 51–55.

    Article  Google Scholar 

  120. Athar, M., Hasan, S.K., and Srivastava, R.C. (1987) Evidence for the involvement of hydroxyl radicals in nickel-mediated enhancement of lipid peroxidation: Implications for nickel carcinogenesis, Biochem. Biophys. Res. Commun. 147, 1276–1281.

    Article  CAS  Google Scholar 

  121. Sole, J., Huguet, J., Arola, L., and Romeu, A. (1990) In vivo effects of nickel and cadmium in rats on lipid peroxidation and ceruloplasmin activity, Bull. Environ. Contam. Toxicol. 44, 686–691.

    Article  CAS  Google Scholar 

  122. Dix, T.A. and Aikens, J. (1993) Mechanisms and biological relevance of lipid peroxidation initiation, Chem. Res. Toxicol. 6, 2–18.

    Article  CAS  Google Scholar 

  123. Umemura, T., Sai, K., Takagi, A., Hasegawa, R., and Kurokawa, Y, (1990) Oxidative DNA damage, lipid peroxidation, and nephrotoxicity induced in the rat kidney after ferric nitrilotriacetate administration, Cancer Lett. 54, 95–100.

    Article  CAS  Google Scholar 

  124. Hartwig, A., Klyszcz-Nasko, H., Schleppegrell, R., and Beyersmann, D. (1993) Cellular damage by ferric nitrilotriacetate and ferric citrate in V79 cells: Interrelationship between lipid peroxidation, DNA strand breaks and sister chromatid exchanges, Carcinogenesis 14, 107–112.

    Article  CAS  Google Scholar 

  125. Park, J.W. and Floyd, R.A. (1992) Lipid peroxidation products mediate the formation of 8-hydroxydeoxyguanosine in DNA, Free. Rod. Biol. Med. 12, 245–250.

    Article  CAS  Google Scholar 

  126. Sygiyama, M., Lin, X., and Costa, M. (1991) Protective effect of vitamin E against chromosomal aberrations and mutation induced by sodium chromate in Chinese hamster V79 cells, Mutat. Res. 260, 19–23.

    Article  Google Scholar 

  127. Reid, T.M. and Loeb, L.A. (1992) Mutagenic specificity of oxygen radicals produced by human leukemia cells, Cancer Res. 52, 1082–1086.

    CAS  Google Scholar 

  128. Frenkel, K. and Chrzan, K. (1987) Radiation-like modification of DNA and H2O2 formation by activated human polymorphonuclear leukocytes (PMNs), in P.A. Cerutti, O.F. Nygaard, and M.G. Simic (eds.), Anticarcinogenesis and Radiation Protection, Plenum, New York, pp. 97–102.

    Chapter  Google Scholar 

  129. Weitzman, S.A. and Stossel, T.P. (1981) Mutation caused by human phagocytes, Science 212, 546–547.

    Article  CAS  Google Scholar 

  130. Zhong, Z., Troll, W., Koenig, K.L., and Frenkel, K. (1990) Carcinogenic sulfide salts of nickel and cadmium induce H2O2 formation by human polymorphonuclear leukocytes, Cancer Res. 50, 7564–7570.

    CAS  Google Scholar 

  131. Misra, M., Rodriguez, R.E., and Kasprzak, K.S. (1990) Nickel-induced lipid peroxidation in the rat: Correlation with nickel effect on antioxidant defense systems, Toxicology 64, 1–17.

    Article  CAS  Google Scholar 

  132. Rodriguez, R.E. and Kasprzak, K.S. (1992) Effects of nickel on catalase and the glutathione peroxidase-reductase system in vitro, in E. Nieboer and J.O. Nriagu (eds.), Nickel and Human Health: Current Perspectives, J. Wiley & Sons, New York, pp. 375–385.

    Google Scholar 

  133. Ochi, T., Ishiguro, T., and Ohsawa, M. (1983) Participation of active oxygen species in the induction of DNA single-strand scissions by cadmium chloride in cultured Chinese hamster cells, Mutat. Res. 122, 169–175.

    Article  CAS  Google Scholar 

  134. Shukla, G.S., Hussain, T., and Chandra, S.V. (1987) Possible role of regional Superoxide dismutase activity and lipid peroxide levels in cadmium neurotoxicity: In vivo and in vitro studies in growing rats, Life Sci. 41, 2215–2221.

    Article  CAS  Google Scholar 

  135. Steward, R.C., Hille, R., and Massey, V. (1985) The reaction of arsenite-complexed xanthine oxidase with oxygen, J. Biol. Chem. 260, 8892–8904.

    Google Scholar 

  136. Nordenson, I. and Beckman, L. (1991) Is the genotoxic effect of arsenic mediated by oxygen free radicals? Hum. Hered. 41, 71–73.

    Article  CAS  Google Scholar 

  137. Hermes-Lima, M., Valle, V.G.R, Vercesi, A.E., and Bechara, E.J.H. (1991) Damage to rat liver mitochondria promoted by δ-aminolevulinic acid-generated reactive oxygen species: Connections with acute intermittent porphyria and lead poisoning, Biochem. Biophys. Acta 1056, 57–63.

    Article  CAS  Google Scholar 

  138. Rodriguez, R.E. and Kasprzak, K.S. (1989) Glutathione peroxidase and myeloperoxidase activity in vitro in the presence of Ni(II), Proc. Am. Assoc. Cancer. Res. 30, 204.

    Google Scholar 

  139. Frenkel, K., Blum, F., and Troll, W. (1986) Copper ions and hydrogen peroxide form hypochlorite from NaCl thereby mimicking myeloperoxidase, 7. Cell. Biochem. 30, 181–193.

    Article  CAS  Google Scholar 

  140. Kasprzak, K.S., North, S.L., and Hernandez, L. (1992) Reversal by nickel(II) of inhibitory effects of some scavengers of active oxygen species upon hydroxylation of 2′-deoxyguanosine in vitro, Chem. Biol. Interact. 84, 11–19.

    Article  CAS  Google Scholar 

  141. May, P.M., Linder, P.W., and Williams, D.R. (1977) Computer simulation of metal ion equilibria in biofluids: Models for the low-molecular-weight complex distribution of calcium(II), magnesium(II), manganese(II), iron(III), copper(II), zinc(II), and lead(II) ions in human plasma, J. Chem. Soc. Dalton Trans. 1977, 588–595.

    Article  Google Scholar 

  142. Datta, A.K., North, S.L., and Kasprzak, K.S. (1994) Effects of chelators on the oxidation of guanine moiety in 2′-deoxyguanosine and DNA in the presence of Cu(II), Co(II), Fe(III), and Cr(III), Toxicologist 14, 261.

    Google Scholar 

  143. Weitzman, S.A., Turk, P.W., Milkowski, D.H. and Kozlowski, K. (1994) Free radical adducts induce alterations in DNA cytosine methylation, Proc. Natl. Acad. Sci. USA 91, 1261–1264.

    Article  CAS  Google Scholar 

  144. Brown, K.C., Yang, S.H., and Kodadek, T. (1995) Highly specific oxidative cross-linking of proteins mediated by a nickel-peptide complex, Biochemistry 34, 4733–4739.

    Article  CAS  Google Scholar 

  145. Kasprzak, K.S. and Ward, J.M. (1991) Prevention of nickel subsulfide carcinogenesis by local administration of Mycobacterium bovis antigen in male F344/NCr rats, Toxicology 67, 97–105.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kasprzak, K.S. (1997). The Oxidative Damage Hypothesis of Metal-Induced Genotoxicity and Carcinogenesis. In: Hadjiliadis, N.D. (eds) Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment. NATO ASI Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5780-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5780-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6440-8

  • Online ISBN: 978-94-011-5780-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics