Skip to main content

Spatial variations of size-fractionated Chlorophyll, Cyanobacteria and Heterotrophic bacteria in the Central and Western Pacific

  • Conference paper
Asia-Pacific Conference on Science and Management of Coastal Environment

Part of the book series: Developments in Hydrobiology ((DIHY,volume 123))

Abstract

Geographic and vertical variations of size-fractionated (0.2–1 μm, 1–10 μm and > 10 μm) Chlorophyll a (Chl.a) concentration, cyanobacteria abundance and heterotrophic bacteria abundance were investigated at 13 stations from 4°S, 160°W to 30°N, 140°E in November 1993. The results indicated a geographic distribution pattern of these parameters with instances of high values occurring in the equatorial region and offshore areas, and with instance of low values occurring in the oligotrophic regions where nutrients were almost undetectable. Cyanobacteria showed the highest geographic variation (ranging from 27×103 to 16,582×103 cell l−1), followed by Chl.a (ranging from 0.048 to 0.178 μg l-1), and heterotrophic bacteria (ranging from 2.84× 103 to 6.50 × 105 cell l-1). Positive correlations were observed between nutrients and Chl.a abundance. Correspondences of cyanobacteria and heterotrophic bacteria abundances to nutrients were less significant than that of Chl.a. The total Chl.a was accounted for 1.0–30.9%, 35.9-53–.7%, and 28.1–57.3% by the >10 μm, 1–10 μm and 0.2–1 μm fractions respectively. Correlation between size-fractionated Chl.a and nutrients suggest that the larger the cell size, the more nutrient-dependent growth and production of the organism. The ratio of pheophytin to chlorophyll imply s that more than half of the > 10 μm and about one third of the 1-10 μm pigment-containing particles in the oligotrophic region were non-living fragments, while most of the 1-10 μm fraction was living cells. In the depth profiles, cyanobacteria were distributed mainly in the surface layer, whereas heterotrophic bacteria were abundant from surface to below the euphotic zone. Chl.a peaked at the surface layer (0-20 m) in the equatorial area and at the nitracline (75–100 m) in the oligotrophic regions. Cyanobacteria were not the principle component of the picoplankton. The carbon biomass ratio of heterotroph to phytoplankton was greater than 1 in the eutrophic area and lower than 1 in oligotrophic waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bird, D. F. & F. Kalff, 1984. Empirical relationship between bacterial abundance and chlorophyll concentration in fresh and marine waters. Can. J. Fish. aquat. Sci. 41: 1015–1023.

    Article  Google Scholar 

  • Bouteiller, L. A., J. Blanchott & M. Rodier, 1992. Size distribution pattern of phytoplankton in the West Pacific: Toward a generalization for the tropical open ocean. Deep Sea Res. 39: 805–823.

    Article  Google Scholar 

  • Campbell, L. & H. A. Nolla, 1994. The importance of Prochlorococcus to community structure in the central North Pacific Oceano. Limnol. Oceanogr. 39: 954–961.

    Article  CAS  Google Scholar 

  • Chisholm, S. W., 1992. Phytoplankton size. In Falkowski, G. & A. D. Woodhead (ed.), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York: 213–237.

    Google Scholar 

  • Chisholm, S. W., R. J. Olson, E. R. Zettler, R. Goericke, J. Waterbury & N. Welshmeyer, 1988. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334: 340–343.

    Article  Google Scholar 

  • Chavez, F. P., 1989. Size distribution of phytoplankton in the central and eastern tropical Pacific. Global Biochem. Cycles, 3: 27–35.

    Article  Google Scholar 

  • Cho, B. C. & F. Azam, 1990. Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone. Mar. Ecol. Prog. Ser. 63: 253–259.

    Article  CAS  Google Scholar 

  • Countiers, C., A. Vaquer, M. Troussellier & J. Lautier, 1994. The smallest eukaryotic organism. Nature 370: 255.

    Google Scholar 

  • Dickson, M. L. & P. A. Wheeler, 1993. Chlorophyll concentration in the North Pacific: Does a latitudinal gradient exist? Limnol. Oceanogr. 38: 1813–1818.

    Article  CAS  Google Scholar 

  • Dortch, Q. & T. T. Packard, 1989. Differences in biomass structures between oligotrophic and eutrophic marine ecosystems. Deep-Sea Res. 36: 223–240.

    Article  CAS  Google Scholar 

  • Dugdale, R. C. & J. J. Goering, 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12: 196–206.

    Article  CAS  Google Scholar 

  • Gomes, H. D. R., J. I. Goes & A. H. Parulekar, 1993. Size-fractionated biomass, photosynthesis and dark carbon dioxide fixation in a trophic oceanic environment. J. Plankton Res. 14: 1307–1329.

    Google Scholar 

  • Grandinger, R., T. Weisse & T. Pillen, 1993. Significance of picocyanobacteria in the Red Sea and the Gulf of Aden. Bot. mar. 35: 245–250.

    Google Scholar 

  • Jiao, N.-Z. & R. Wang, 1994. Size-fractionated biomass and production of microplankton in the Jiaozhou Bay. J. Plankton Res. 16:1609–1625.

    Article  Google Scholar 

  • Kana, T. M. & P. M. Glibert, 1987. Effect of irradianaces up to 2000uEm-2S on marine Synechococcus WH7803. 1. Growth, pigmentation and cell composition. Deep-Sea Res. 34: 479–495.

    Article  CAS  Google Scholar 

  • Krupatkina, D. K., 1990. Estimates of primary production on oligotrophic waters and metabolism of picoplankton: A review. Mar. Microb. Food Web. 4: 87–101.

    Google Scholar 

  • Martin, J. H., K. H. Coale, K. S. Johnson, S. E. Fitzwater, R. M. Gordon, S. J. Tanner, C. N. Hunter, V. A. Elrod, J. L. Nowicki, T. L. Coley, R. T. Barber, S. Lindley, A. J. Watson, K. Van Scoy, C. S. Law, M. I. Liddicoat, R. Ling, T. Stanton, J. Stockel, C. Collins, A. Anderson, R. Bidigare, M. Ondrusek, M. Latasa, F. J. Mulero, K. Lee, W. Yao, J. Z. Zhang, G. Fredrich, C. Sakamoto, F. Chavez, K. Bick, Z. Kobler, R. Green, P. G. Falkowski, S. W. Chisholm, F. Hoge, R. Swift, J. Yungle, S. Turner, Pl. Nightinggale, A. Hatten, P. Liss & N. W. Tindale, 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific, Nature 371: 123–129.

    Article  CAS  Google Scholar 

  • Odate, T. & M. Fukuchi, 1994. Surface distribution of picoplankton along the first leg of the JARE-33 cruise, from Tokyo to Freemantle, Australia. Bull. Plankton Soc. Japan 41: 93–104.

    Google Scholar 

  • Parsons, T. R., Y Maita & C. M. Lalli, 1984. A Manual of Chemical and Biological Method for Seawater Analysis. Pergamon Press: 3–122.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Article  Google Scholar 

  • SCOR, 1990. Joint Global Ocean Flux Study (JGOFS) science plan. JGOFS report. 5: 1–51.

    Google Scholar 

  • Suzuki, R. & T. Ishimaru, 1990. An improved method for the determination of phytoplankton chlorophyll using N, N-Dimethylformamide. J. Oceanogr. Soc. Japan 46: 190–194.

    Article  CAS  Google Scholar 

  • Suzuki, M. T., E. B. Sherr & B. F. Sherr, 1993. DAPI direct counting underestimates bacterial abundance and average cell size compared to AO direct counting. Limnol. Oceanogr. 38: 1566–1570.

    Article  Google Scholar 

  • Tata, K., K. Matsumoto, M. Tata & T. Ochi, 1994. Size distribution of phytoplankton community in Hiroshima Bay. Kagawa Daigaku Nogakubu Gakujutsu Hokoku 46: 27–35.

    Google Scholar 

  • Veldhuis, M. J. W. & G. W. Kraay, 1993. Cell abundance and fluorescence of picoplankton in relation to growth irradiance and availability in the Red Sea. Neth. J. Sea Res. 31: 135–145.

    Article  CAS  Google Scholar 

  • Wood, A. M., P. K. Horan, K. Muirhead, D. A. Phinney, C. M. Yentsch & J. B. Waterbury, 1985. Discrimination between types of pigments in marine Synechococcus spp. by scanning spectroscopy, epifluoroscence microscopy and flow cytometry. Limnol. Oceanogr. 30: 1303–1315.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yuk-Shan Wong Nora Fung-Yee Tam

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this paper

Cite this paper

Jiao, N., Ni, IH. (1997). Spatial variations of size-fractionated Chlorophyll, Cyanobacteria and Heterotrophic bacteria in the Central and Western Pacific. In: Wong, YS., Tam, N.FY. (eds) Asia-Pacific Conference on Science and Management of Coastal Environment. Developments in Hydrobiology, vol 123. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5234-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5234-1_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6203-9

  • Online ISBN: 978-94-011-5234-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics