Skip to main content

Atmospheric Methane: Estimates of Its Past, Present and Future and Its Role in Effecting Changes in Atmospheric Chemistry

  • Chapter
Land Use Changes in Europe

Part of the book series: The GeoJournal Library ((GEJL,volume 18))

  • 122 Accesses

Abstract

Land use and industrialization in the past have led to local or regional environmental degradation; now our activities have reached a level at which we are facing serious global consequences. This is particularly true for the atmosphere, in which anthropogenically released gases have led to global changes in the chemical composition of the air and changes in the Earth’s radiation budget, with likely consequences for the climate in the near future. Expected temperature rises due to increasing concentrations of greenhouse gases such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), ozone (O3) and chlorofluorocarbons (CFCs), have the potential to shift the climate regions within the coming decades (Bolin et al., 1986). This may be beneficial for some regions, but catastrophic for others. The regional climate shifts predicted are still subject to a high degree of uncertainty since the response of the climate system to perturbations is not fully understood. Model calculations agree to the extent that radiative forcing of the atmosphere due to increased concentrations of greenhouse gases globally leads to a warming of the Earth’s surface, but differ considerably in their predictions on a regional level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aselmann, I., 1989, Global scale extrapolation: A critical assessment. In M.O. Andreae and D.S. Schimel (eds.) Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere. Dahlem Conference, Berlin, February 19–24. Wiley & Sons, Chichester. 119–133.

    Google Scholar 

  • Aselmann, I. and Crutzen, P.J., 1989, Freshwater wetlands: global distribution of natural wetlands, rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem. 8 (4): 309–358.

    Article  Google Scholar 

  • Bingemer, H.G. and Crutzen, P.J., 1987, The production of methane from solid wastes. J. Geophys. Res., 92 (D2), 2181–2187.

    Article  CAS  Google Scholar 

  • Blake, D.R and Rowland, F.S., 1988, Continuing worldwide increase in tropospheric methane, 1978–1987. Science, 239, 1129–1131.

    Article  CAS  Google Scholar 

  • Bolin, B., 1981, Carbon Cycle Modeling. SCOPE 16. John Wiley and Sons, Chichester/New York.

    Google Scholar 

  • Bolin, B., Döös, B.R, Jäger, J. and Warrick, RA., 1986, The Greenhouse Effect, Climatic Change and Ecosystems. SCOPE 29. John Wiley and Sons, Chichester/New York.

    Google Scholar 

  • Brasseur, G. and Solomon, S., 1984, Aeronomy of the Middle Atmosphere. Reidel, Dordrecht, The Netherlands.

    Google Scholar 

  • Brtthl, Ch. and Crutzen, P.J., 1988, Scenarios of possible changes in atmospheric temperatures and ozone concentrations due to man’s activities, estimated with a one-dimensional coupled photochemical climate model. Climate Dynamics, 2, 173–203.

    Article  Google Scholar 

  • Chamberlain, J.W., Foley, H.M., MacDonald, G.J. and Ruderman, M.A., 1982, Climate effects of minor constitutents. In W.C. Clark (ed.), Carbon Dioxide Review 1982. Clarendon Press, Oxford. 255–277.

    Google Scholar 

  • Clark, W.C., 1982, Carbon Dioxide Review 1982. Clarendon Press, Oxford.

    Google Scholar 

  • Crutzen, P.J., 1986, Role of the tropics in atmospheric chemistry. In RE. Dickinson (ed.), The Geophysiology of Amazonia. John Wiley and Sons, New York. 107–132.

    Google Scholar 

  • Crutzen, P.J., 1988, Tropospheric ozone: an overview. In I.S.A. Isaksen (ed.), Tropospheric Ozone. D. Reidel, Dordrecht, The Netherlands. 3–32.

    Google Scholar 

  • Crutzen, P.J., Heidt, L.E., Krasnec, J.P., Pollock, W.H. and Seiler, W., 1979, Biomass burning as a source of atmospheric gases. Nature, 282 (5763), 253–256.

    Article  CAS  Google Scholar 

  • Crutzen, P.J. and Gidel, L.T., 1983, A two-dimensional photochemical model of the atmosphere 2: The tropospheric budget of anthropogenic chlorocarbons CO, CH4, CH3Cl and the effect of various NOx sources on tropospheric ozone. J. Geophys. Res., 88(C11), 6,641–6, 661.

    Google Scholar 

  • Crutzen, P.J. and Schmailzl, U., 1983, Chemical budgets of the stratosphere. Planet. Space Sci., 31, 1,009–1, 032.

    Google Scholar 

  • Crutzen, P.J., Delany, A.C., Greenberg, J.P., Haagensen, P., Heidt, L.E., Lueb, R, Pollock, W.H., Seiler, W., Wartburg, A. and Zimmerman, P.R., 1985, Tropospheric chemical composition measurements in Brazil during the dry season. J. Atmos. Chem., 2, 233–256.

    Article  CAS  Google Scholar 

  • Crutzen, P.J., Aselmann, I. and Seiler, W., 1986, Methane production by domestic animals, other herbivorous fauna, wild ruminants and humans. Tellus, 38B, 271–284.

    Google Scholar 

  • Darmstadter, J., Ayres, L.W., Ayres, RU., Clark, W.C., Crosson, R.P., Crutzen, P.J., Graedel, T.E., McGill, R, Richards, J.F. and Torr, J.A., 1987, Impacts of World Development on Selected Characteristics of the Atmosphere: An Integrated Approach. Oak Ridge National Laboratory, 2 volumes, ORNL/Sub/ 86–22033/1/V2, Oak Ridge, Tennessee 37831, USA.

    Google Scholar 

  • Dickinson, RE., 1986, How will climate change? In B. Bolin, B.R. Döös and R.A. Warwick (eds.), The Greenhouse Effect, Climatic Change and Ecosystems. SCOPE 29. John Wiley and Sons, Chichester/New York. 207–270.

    Google Scholar 

  • Dickinson, RE. and Cicerone, RJ., 1986, Future global warming from atmospheric trace gases. Nature, 319, 109–115.

    Article  CAS  Google Scholar 

  • Ehhalt, D.H., 1988, How has the atmospheric concentration of CH4 changed? In F.S. Rowland and I.S.A. Isaksen (eds.), The Changing Atmosphere (Dahlem Konferenzen). John Wiley and Sons, Chichester. 25–32.

    Google Scholar 

  • Ehhalt, D.H. and Schmidt, U., 1978, Sources and sinks of atmospheric methane. Pure Appl. Geophys., 116, 452–464.

    Article  CAS  Google Scholar 

  • FAO (Food and Agriculture Organization), 1986, Production Yearbook. Rome.

    Google Scholar 

  • Fraser, P.J., Rasmussen, RA., Creffield, J.W., French, J.R and Khalil, M.A.K., 1986, Termites and global methane–another assessment. J. Atmos. Chem., 4, 295–310.

    Article  CAS  Google Scholar 

  • Gates, D.M., 1981, Energy and Ecology. Sinauer Associates, Sunder - land.

    Google Scholar 

  • Gore, A.J.P., 1983, Introduction (Chapter 1). In A.J.P. Gore (ed.), Ecosystems of the World (4A). Mires: Swamp, Bog, Fen and Moor. Volume 1, Elsevier, Amsterdam. 1–34.

    Google Scholar 

  • Grau III, RH. and LaScola, J.C., 1980, Methane emissions from US coal mines in 1980. Information Circular, United States Department of the Interior, Bureau of Mines, 8987.

    Google Scholar 

  • Hansen, J. and Lebedeff, S., 1987, Global trends of measured surface air temperature. J. Geophys. Res., 92(D11), 13,345–13, 372.

    Google Scholar 

  • Harriss, RC., Sebacher, D.J. and Day, F.P., 1982, Methane flux in the

    Google Scholar 

  • Great Dismal Swamp. Nature 297 673–674.

    Google Scholar 

  • Houghton, RA., Hobbie, J.E., Melillo, J.M., Moore, B., Petersen, B.J., Shaver, G.R and Woodwell, G.M. (1983). Changes in the carbon content of terrestrial biota and soils between 1860 and 1980. A net release of CO, to the atmosphere. Ecological Monographs, 53 (3), 235–262.

    Article  CAS  Google Scholar 

  • Howard-Williams, C. and Thompson, K., 1985, The conservation and management of African wetlands. In P. Denny (ed.), The Ecology and Management of African Wetland Vegetation. Dr. W. Junk Publ., Dordrecht, The Netherlands. 203–210.

    Google Scholar 

  • Jones, P.D., Wigley, T.M.L., and Wright, P.B., 1986, Global temperature variations between 1861 and 1984. Nature, 322, 430–434.

    Article  Google Scholar 

  • Junk, W.J., 1989, Wetlands of northern South America. In D. Whigham (ed.), Wetlands of the World. (In preparation.)

    Google Scholar 

  • Keller, M., Goreau, T.J., Wofsy, S.C., Kaplan, W.A. and McElroy, M.B., 1983, Production of nitrous oxide and consumption of methane by forest soils. Geophys. Res. Lett., 10, 1156–1159.

    Article  CAS  Google Scholar 

  • Khalil, M.A.K. and Rasmussen, R.A., 1983, Sources, sinks and seasonal cycles of atmospheric methane. J. Geophys. Res., 88(C9), 51315144.

    Google Scholar 

  • Khalil, M.A.K. and Rasmussen, RA., 1987, Atmospheric methane: Trends over the last 10,000 years. Atmospheric Environment, 21 (11), 2445–2452.

    Article  CAS  Google Scholar 

  • Koyama, T., 1963, Gaseous metabolism in lake sediments and paddy soils and the production of hydrogen and methane. J. Geophys. Res., 68, 3971–3973.

    CAS  Google Scholar 

  • Lamb, H.H., 1984, Climate in the last thousand years: Natural climatic fluctuations and change. In H. Flohn and R Fantechi (eds.), The Climate of Europe: Past, Present and Future. Reidel, Dordrecht, The Netherlands. 25–64.

    Google Scholar 

  • Levy, H. II., 1971, Normal atmosphere: Large radical and formaldehyde concentrations predicted. Science, 173, 141–143.

    Article  CAS  Google Scholar 

  • Logan, J.A., 1985, Tropospheric ozone: seasonal behavior, trends and anthropogenic influence. J. Geophys. Res., 90, 10,463–10, 482.

    Google Scholar 

  • Logan, J.A., Prather, M.J., Wofsy, S.C. and McElroy, M.B., 1981, Tropospheric chemistry: A global perspective. J. Geophys. Res., 86 (C8), 7210–7254.

    Article  CAS  Google Scholar 

  • Lowe, D.C., Brenninkmeijer, C.A.M., Manning, M.R, Sparks, R and Wallace, G., 1988, Radiocarbon determination of atmospheric methane at Baring Head, New Zealand. Nature, 332, 522–525.

    Article  CAS  Google Scholar 

  • Matthews, E. and Fung, I., 1987, Methane emission from natural wetlands: global distribution, area and environmental characteristics of sources. Global Biogeochemical Cycles, 1(1), 6186.

    Google Scholar 

  • McConnell, J.C., McElroy, M.B. and Wofsy, S.C., 1971, Natural sources of atmospheric CO. Nature, 233, 187–188.

    Article  CAS  Google Scholar 

  • McDowell, RE., 1976, Importance of ruminants of the world for non- food uses. Cornell International Agricultural Mimeograph 52.

    Google Scholar 

  • Molina, M.J. and Rowland, F.S., 1974, Stratospheric sink for chlorofluoromethane: chlorine atom catalysed destruction of ozone. Nature, 249, 810–812.

    Article  CAS  Google Scholar 

  • Pearman, G.I., 1988, Greenhouse gases: Evidence for atmospheric changes and anthropogenic causes. In G.I. Pearman (ed.), Greenhouse, Planning for Climate Change. E.J. Brill, Leiden. 321

    Google Scholar 

  • Pearman, G.I. and Fraser, P.J., 1988, Sources of increased methane. Nature, 332, 489–490.

    Article  Google Scholar 

  • Perner, D., Platt, U., Trainer, M., Hi%ler, G., Drummond, J., Junkermarn, W., Rudolph, J., Schubert, B., Volz, A., Ehhalt, D.H., Rumpel, K.J. and Helas, G., 1987, Measurements of tropospheric OH concentrations: A comparison of field data with model predictions. J. Atnros. Chem., 5, 185–216.

    CAS  Google Scholar 

  • Ramanathan, V., Cicerone, RJ., Singh, H.B. and Kiehl, J.T., 1985, Trace gas trends and their potential role in climate change. J. Geophys. Res., 90(D3), 5,547–5, 566.

    Google Scholar 

  • Ramanathan, V., Callis, L., Cess, R, Hansen, J., Isaksen, I., Kuhn, W., Lacis, A., Luther, F., Mahlman, J., Reck, R and Schlesinger, M., 1987, Climate-chemical interactions and effects of changing atmospheric trace gases. Rev. Geophys., 25, 1141–1482.

    Article  Google Scholar 

  • Rasmussen, RA. and Khalil, M.A.K., 1984, Atmospheric methane in the recent and ancient atmospheres: Concentrations, trends and interhemispheric gradients. J. Geophys. Res., 89(D7), 11,599–11,605.

    Article  CAS  Google Scholar 

  • Seiler, W., 1984, Contribution of biological processes to the global budget of CH4 in the atmosphere. In M.J. Klug and C.A. Reddy (eds.), Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington D.C. 468–477.

    Google Scholar 

  • Seiler, W. and Crutzen, P.J., 1980, Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change, 2, 207–247.

    Article  CAS  Google Scholar 

  • Seiler, W., Conrad, R. and Scharffe, D., 1984, Field studies of methane emissions from termite nests into the atmosphere and measurements of methane uptake by tropical soils. J. Aimos. Chem., 1, 171–186.

    Article  CAS  Google Scholar 

  • Sheppard, J.C., Westberg, H., Hopper, J.F. and Ganesan, K., 1982, Inventory of global methane sources and their production rates. J. Geophys. Res., 87(C2), 1,305–1312.

    Article  CAS  Google Scholar 

  • Tucker, G.B., 1988, Climate modelling: How does it work? In G.I. Pearman (ed.), Greenhouse, Planning for Climate Change. E.J. Brill, Leiden, The Netherlands. 22–34.

    Google Scholar 

  • WMO (World Meteorological Organization), 1985, Atmospheric Ozone 1985. Global Ozone Research and Monitoring Project No. 16, Vol. 1–3. WMO, Case Postale No. 5, CH-1211 Geneva.

    Google Scholar 

  • Wolin, M.J. and Miller, T.L., 1987, Bioconversion of organic carbon to CH4 and CO2. Geomicrobiology J, 5 (3/4), 239–259.

    Article  CAS  Google Scholar 

  • Woodwell, RA., Whittaker, RH. and Reiners, W.A., 1978, The biota and the world carbon budget. Science, 199.

    Google Scholar 

  • Zimmerman, P.R., Greenberg, J.P., Wandiga, S.O. and Crutzen, P.J., 1982, Termites: A potential large source of atmospheric methane, carbon dioxide and molecular hydrogen. Science, 213, 563–565.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aselmann, I. (1991). Atmospheric Methane: Estimates of Its Past, Present and Future and Its Role in Effecting Changes in Atmospheric Chemistry. In: Brouwer, F.M., Thomas, A.J., Chadwick, M.J. (eds) Land Use Changes in Europe. The GeoJournal Library, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3290-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3290-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5453-9

  • Online ISBN: 978-94-011-3290-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics