Skip to main content
Log in

Scenarios of possible changes in atmospheric temperatures and ozone concentrations due to man's activities, estimated with a one-dimensional coupled photochemical climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A one-dimensional coupled climate and chemistry model has been developed to estimate past and possible future changes in atmospheric temperatures and chemical composition due to human activities. The model takes into account heat flux into the oceans and uses a new tropospheric temperature lapse rate formulation. As found in other studies, we estimate that the combined “greenhouse effect” of CH4, O3, CF2Cl2, CFCl3 and N2O in the future will be about as large as that of CO2. Our model calculates an increase in average global surface temperatures by about 0.6°C since the start of the industrial era and predicts for A.D. 2050 a twice as large additional rise. Substantial depletions of ozone in the upper stratosphere by between 25% and 55% are calculated, depending on scenario. Accompanying temperature changes are between 15°C and 25°C. Bromine compounds are found to be important, if no rigid international regulations on CFC emissions are effective. Our model may, however, concivably underestimate possible effects of CFCl3, CF2Cl2, C2F3Cl3 and other CFC and organic bromine emissions on lower stratospheric ozone, because it can not simulate the rapid breakdown of ozone which is now being observed worldwide. An uncertainty study regarding the photochemistry of stratospheric ozone, especially in the region below about 25 km, is included. We propose a reaction, involving excited molecular oxygen formation from ozone photolysis, as a possible solution to the problem of ozone concentrations calculated to be too low above 45 km. We also estimate that tropospheric ozone concentrations have grown strongly in the northern hemisphere since pre-industrial times and that further large increases may take place, especially if global emissions of NOx from fossil fuel and biomass burning were to continue to increase. Growing NOx emissions from aircraft may play an important role in ozone concentrations in the upper troposphere and low stratosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman M (1971) Ultraviolet solar radiation related to mesospheric processes. In: Fiocco G (ed) Mesospheric models and related experiments. Reidel, Dordrecht, pp 149–159.

    Google Scholar 

  • Allen M, Frederick JE (1982) Effective photodissociation cross sections for molecular oxygen and nitric oxide in the Schumann Runge bands. J Atmos Sci 39:2066–2075

    Google Scholar 

  • Andreae MO, Browell EV, Garstang MA, Gregory GL, Harriss RC, Hill GF, Jacob DJ, Pereira MC, Sachse GW, Setzer AW, Silva Dias PL, Talbot RW, Torres AL, Wofsy SC (1987) Biomass burning emissions and sssociated haze layers over Amazonia, J. Geophys Res (in press)

  • Bates DR, Nicolet M (1950) The photochemistry of atmospheric water vapor. J Geophys Res 55:301–327

    Google Scholar 

  • Bingemer H, Crutzen PJ (1987) The production of methane from solid wastes. J Geophys Res 92:2181–2187

    Google Scholar 

  • Bowman KP (1986) Interannual variability of total ozone during the breakdown of the Antarctic circumpolar vortex. Geophys Res Lett 13:1193–1196

    Google Scholar 

  • Brewer AW (1949) Evidence for a world circulation provided by measurement of helium and water vapour distribution in the stratosphere. Quart J Roy Met Soc 75:351–363.

    Google Scholar 

  • Brühl C (1987) An efficient model for changes of global climate and composition of the atmosphere due to human activities (in German). Dissertation, University of Mainz

  • Burrows JP (1984) Kinetics of the reaction of OH with ClO. J Chem Soc Faraday Trans 2, 957–971

    Google Scholar 

  • Callis LB, Natarajan M (1986) Ozone and nitrogen dioxide changes in the stratosphere during 1979–84. Nature 323:772–777

    Google Scholar 

  • Callis LB, Natarajan M, Boughner RE (1983) On the relationship between the greenhouse effect, atmospheric photochemistry, and species distribution. J. Geophys Res 88:1401–1426

    Google Scholar 

  • Chameides WL, Stedman DH, Dickerson RR, Rusch DW, Cicerone RJ (1977) NOx production in lightning. J Atmos Sci 34:143–149

    Google Scholar 

  • Chubachi S (1985) A special ozone observation at Syowa station, Antarctica from February 1982 to January 1983. In: Zerefos CS, Ghazi A (eds) Atmospheric ozone. Reidel, Dordrecht, pp 285–289

    Google Scholar 

  • Clarke JI (1972) Population geography. Pergamon Press, Oxford

    Google Scholar 

  • Clark WC (ed) (1982) Carbon dioxide review 1982. Clarendon Press, Oxford

    Google Scholar 

  • Craig H, Chou CC (1982) Methane: The record in polar ice cores. Geophys Res Lett 9:1221–1224

    Google Scholar 

  • Crutzen PJ (1970) The influence of nitrogen oxides on the atmospheric ozone content. Quart J Roy Met Soc 96:320–325

    Google Scholar 

  • Crutzen PJ (1971) Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere. J Geophys Res 76:7311–7327

    Google Scholar 

  • Crutzen PJ (1973) A discussion of the chemistry of some monor constitutents in the stratosphere and troposphere. Pure Appl Geophys 106-108:1385–1399

    Google Scholar 

  • Crutzen PJ (1979) The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Ann Rev Earth Planet Sci 7:443–472

    Google Scholar 

  • Crutzen PJ (1987a) The role of the tropics in atmospheric chemistry. In: Dickinson R (ed): Geophysiology of Amazonia, Wiley, New York, pp 107–130

    Google Scholar 

  • Crutzen PJ (1987b) Tropospheric ozone: An overview. In: I. S. A. Isaksen S. A. Penkett (eds) Proceedings NATO Advanced Study Institute on Tropospheric Ozone. Reidel Dordrecht (in press)

    Google Scholar 

  • Crutzen PJ, Arnold F (1986) Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime ‘ozone hole’. Nature 324:651–655

    Google Scholar 

  • Crutzen PJ, Gidel LT (1983) A two-dimensional model of the atmosphere. 2: The tropospheric budgets of the anthropogenic chlorocarbons, CO, CH4, CH3Cl and the effect of various NOx sources on tropospheric ozone. J Geophys Res 88:6641–6661

    Google Scholar 

  • Crutzen PJ, Schmailzl U (1983) Chemical budgets of the stratosphere. Planet Space Sci 31:1009–1032

    Google Scholar 

  • Crutzen PJ, Isaksen ISA, McAfee JR (1978) The impact of the chlorocarbon industry on the ozone layer. J Geophys Res 83:345–363

    Google Scholar 

  • Crutzen PJ, Delany AC, Greenberg J, Haagenson P, Heidt L, Lueb R, Pollock W, Seiler W, Wartburg A, Zimmerman P (1985) Tropospheric chemical composition measurements in Brazil during dry season. J Atmos Chem 2:233–256

    Google Scholar 

  • Crutzen PJ, Aselmann I, Seiler W (1986) Methane production by domestic animals, wild ruminants, other herbivorous fauna, and humans. Tellus 38B:271–284

    Google Scholar 

  • Cunnold DM, Prinn RG, Rasmussen RA, Simmonds PG, Alyea FN, Cardelino CA, Crawford AJ (1983a) The Atmospheric Lifetime Experiment — 4. Results for CF2Cl2 based on three years data. J Geophys Res 88:8401–8414

    Google Scholar 

  • Cunnold DM, Prinn RG, Rasmussen RA, Simmonds PG, Alyea FN, Cardelino CA, Crawford AJ, Fraser PJ, Rosen RD (1983b) The Atmospheric Lifetime Experiment — 3. Lifetime methodology and application to three years of CFCl3 data. J Geophys Res 88:8379–8400.

    Google Scholar 

  • Davenport JE (1980). Parameters for ozone photolysis as a function of temperature at 280–380 nm. Report FAA-EE-80-44, US Department of Transportation. Washington D.C. (available from NTIS)

    Google Scholar 

  • DeMore WB, Potapoff M (1972) Temperature and pressure dependence of CO2 extinction coefficients J Geophys Res 77:6291–6293

    Google Scholar 

  • DeMore WB, Watson RT, Golden DM, Hampson RF, Kurylo MJ, Howard CJ, Molina MJ, Ravishankara AR (1982) Chemical kinetics and photochemical data for use in stratospheric modeling. Jet Prop Lab Publ 82-57, evaluation no.5, NASA, Pasadena, CA

    Google Scholar 

  • DeMore WB, Margitan JJ, Molina MJ, Watson RT, Golden DM, Hampson RF, Kurylo MJ, Howard CJ, Ravishankara AR (1985) Chemical kinetics and photochemical data for use in stratospheric modeling. Jet Prop Lab Publ 85-37, evaluationno.7, NASA, Pasadena, CA

    Google Scholar 

  • Dickinson RE (1973) Method of parameterization for infrared cooling between altitudes of 30 and 70 km. J Geophys Res 78:4451–4457

    Google Scholar 

  • Donner L, Ramanathan V (1980) Methane and nitrous oxide: their effects on the terrestrial climate. J Atmos Sci 37:119–124

    Google Scholar 

  • Ember LR, Layman PL, Lepkowski W, Zurer PS (1986) The changing atmosphere. Chemical & Engineering News 65 (No. 47):14–64

    Google Scholar 

  • Fabian P, Borchers R, Penkett SA, Prosser NJD (1981) Halocarbons in the stratosphere. Nature 294:733–735

    Google Scholar 

  • Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal CIOx/NOx interaction. Nature 315:207–210

    Google Scholar 

  • Fishman J, Solomon S, Crutzen PJ (1979). Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone. Tellus 31:432–446.

    Google Scholar 

  • Frederick JE, Cicerone RJ (1985) Dissociation of metastable O2 as a potential source of atmospheric odd oxygen. J Geophys Res 91:10733–10738

    Google Scholar 

  • Froidevaux L, Allen M, Yung YL (1985) A critical analysis of ClO and O3 in the mid-latitude stratosphere. J Geophys Res 90:12999–13029

    Google Scholar 

  • Galbally IE, Roy CR (1978) Loss of fixed nitrogen from soils by nitric oxide exhalation. Nature 275:734–735

    Google Scholar 

  • Gidel LT, Crutzen PJ, Fishman J (1983) A two-dimensional photochemical model of the atmosphere. I: Chlorocarbon emissions and their effect on stratospheric ozone. J Geophys Res 88:6622–6640

    Google Scholar 

  • Hammitt JK, Wolf KA, Camm F, Mooz WE, Quinn TH, Bamezai A (1986) Product uses and market trends for potential ozone-depleting substances, 1985–2000. Papet R3386-EPA, RAND corporation, Santa Monica, CA

    Google Scholar 

  • Hampson J (1965) Chemiluminescent emissions observed in the stratosphere and mesosphere. In: Les problèmes météorologiques de la stratosphère et de la mésosphère, CNES, Presses Universitaires de France, Paris

    Google Scholar 

  • Hayman GD, Davies JM, Cox RA (1986) Kinetics of the reaction ClO+ClO→products and its potential relevance to Antarctic ozone. Geophys Res Lett 13:1347–1350

    Google Scholar 

  • Hills, AJ, Howard CJ (1984) Rate coefficient temperature dependence on branching ratio for the OH+ClO reaction. J Chem Phys 81:4458–4465.

    Google Scholar 

  • Hinkelmann K (1971) Thermodyamik der Atmosphäre. Institute for Meteorology, University of Mainz

  • Hubrich C, Stuhl F (1980) The ultraviolet absorption of some halogenated methanes and ethanes of atmospheric interest. J Photochem 12:93–107

    Google Scholar 

  • Hummel JR, Kuhn WR (1981) An atmospheric radiative-convective model with interactive water vapor transport and cloud development. Tellus 33:372–381

    Google Scholar 

  • Johnson K (1987) Agreement nears on protection of the Earth's ozone layer. Nature 328:7

    Google Scholar 

  • Jones RL, Pyle JA, Harris JE, Zavody, AM, Russell III JM Gille JC (1986a) The water vapour budget of the stratosphere studied using LIMS and SAMA satellite data. Quart J Roy Met Soc 112:1127–1143

    Google Scholar 

  • Jones PD, Wigley TML, Wright PB (1986b) Global temperature variations between 1861 and 1984. Nature 322:430–434.

    Google Scholar 

  • Kagann RH, Elkins JW, Sams RL (1983) Absolute band strength of halocarbons F-11 and F-12 in the 8 to 16 μm region. J Geophys Res 88:1427–1432

    Google Scholar 

  • Khalil MAK, Rasmussen RA (1984) Carbon monoxide in the earth's atmosphere: increasing trend. Science 224:54–56

    Google Scholar 

  • Khalil MAK, Rasmussen RA (1985) Causes of increasing atmospheric methane: depletion of hydroxyl radicals and the rise of emissions. Atmos Environment 19:397–407

    Google Scholar 

  • Kiehl JT (1985) Searching for the radiative signal of increasing carbon dioxide and other trace gases. In: McCracken MC, Luther FM (eds) Detecting the climatic effects of increasing carbon dioxide. Report DOE/ER-0235, US Department of Energy, Washington, D.C., pp. 13–28 (available from NTIS)

    Google Scholar 

  • Kiehl JT, Ramanathan V (1983) CO2 radiative parameterization used in climate models: comparisons with narrow band models and with laboratory data. J Geophys Res 88:5191–5202

    Google Scholar 

  • Kiehl JT, Brühl C, Yamanouchi T (1985) A parameterization for absorption due to the near infrared bands of CO2. Tellus 37B:189–196

    Google Scholar 

  • Lal S, Borchers R, Fabian P, Krüger BC (1985) Increasing abundance of CBrClF2 in the atmosphere. Nature 316:135–136

    Google Scholar 

  • Levy A (1907) Analyse de l'air atmosphérique ozone. Annales d'Observatoire Municipal de Montsouris 8:289–291

    Google Scholar 

  • Levy II. H (1971) Normal atmosphere: Large radical and formaldehyde concentrations predicted. Science 173:141–143

    Google Scholar 

  • Levy II. H (1972) Photochemistry of the lower troposphere. Planet Space Sci 20:919–935

    Google Scholar 

  • Liu SC, Donahue TM, Cicerone RJ, Chameides WL (1976) Effect of water vapor on the destruction of ozone in the stratosphere perturbed by Clx or NOx pollutants. J Geophys Res 81:3111–3118

    Google Scholar 

  • Logan JA (1983) Nitrogen oxides in the troposphere: global and regional budgets. J Geophys Res 88:10785–10807

    Google Scholar 

  • Logan JA (1985) Tropospheric ozone: seasonal behavior, trends and anthropogenic influence. J Geophys Res 90:10463–10482

    Google Scholar 

  • Logan JA, Prather MJ, Wofsy SC, McElroy MB (1978) Atmospheric chemistry: response to human influence. Phil Trans Roy Soc London 290A:187–234

    Google Scholar 

  • Logan JA, Prather MJ, Wofsy SC, McElroy MB (1981) Tropospheric chemistry: a global perspective. J Geophys Res 86:7210–7254

    Google Scholar 

  • Lovelock JE (1975) Natural halocarbons in the air and in the sea. Nature 256:193–194

    Google Scholar 

  • Luther FM, Gelinas RJ (1976) Effect of molecular multiple scattering and surface albedo on atmospheric photodissociation rates. J Geophys Res 81:1125–1132

    Google Scholar 

  • Magnotta F, Johnston HS (1980) Photodissociation quantum yields for the NO3 free radical. Geophys Res Lett 7:769–772

    Google Scholar 

  • Manabe S, Wetherald RT (1967) Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci 24:241–259

    Google Scholar 

  • Mankin WG, Coffey MT (1984) Increased stratospheric hydrogen chloride in the El Chichon cloud. Science 226:170–172

    Google Scholar 

  • McClatchey RA, Benedict WS, Clough SA, Burch DE, Calfee RF, Fox K, Rothman LS, Goring JS (1973) AFCRL atmospheric absorption line compilation. AFCRL-TR-73-0096, Air Force Cambridge Res. Lab., Bedford, Massachusetts (available from NTIS)

    Google Scholar 

  • McElroy MB, Salawitch RJ, Wofsy SC, Logan JA (1986) Reductions of Antarctic ozone due to synergistic interactions of chlorine and bromine. Nature 321:759–762

    Google Scholar 

  • McPeters RD, Bass AM (1982) Anomalous atmospheric spectral features between 300 and 310 nm interpreted in light of new ozone absorption coefficient measurements. Geophys Res Lett 9:227–230

    Google Scholar 

  • Mitchell JFB (1986) Simulation of climate change due to increased CO2. Proceedings. ASI on physically-based modelling and simulation of climate and climatic change, Erice, May 1986. Reidel, Dordrecht (in press)

    Google Scholar 

  • Molina LT, Molina MJ (1987) Ultraviolet spectrum of HOCI. J Phys Chem 82:2410–2414

    Google Scholar 

  • Molina LT, Molina MJ (1987) Production of Cl2O2 from the self-reaction of the ClO radical. J Phys Chem 91:433–436

    Google Scholar 

  • Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoro-methane: chlorine atom catalysed destruction of ozone. Nature 249:810–812

    Google Scholar 

  • Molina LT, Molina MJ, Rowland FS (1982) Ultraviolet absorption cross sections of several brominated methanes and ethanes of atmospheric interest. J Phys Chem 86:2672–2676

    Google Scholar 

  • Moorgat G, Kuszus E (1978) Mathematical expression for the O(1D) quantum yields from the O3 photolysis as a function of temperature (230–320 nm). Geophys Res Lett 5:191–194

    Google Scholar 

  • National Research Council (NRC) (1982) Causes and effects of stratospheric ozone reducton: an update. National Academy Press, Washington, D.C. 339 pages

    Google Scholar 

  • Neftel A, Moor E, Oeschger H, Stauffer B (1985) Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315:45–47

    Google Scholar 

  • Nicolet M (1964) Reactions and photochemistry of atoms and molecules. I. Introduction to chemical aeronomy. Disc Furaday Soc 37:7–20

    Google Scholar 

  • Nicolet M, Peetermans W (1972) The production of nitric oxide in the stratosphere by oxidation of nitrous oxide. Ann Géophys 28:751–762

    Google Scholar 

  • Oort AH, Rasmusson EM (1971) Atmospheric circulation statistics. NOAA profes. paper 5, US Department of Commerce. Rockville, MD 323 pages (available at US Government Printing Office, Washington D.C.)

    Google Scholar 

  • Owens AJ, Hales CH, Filkin DL, Miller C, Steed JM, Jesson JP (1985) A coupled one-dimensional radiative-convective, chemistry-transport model of the atmosphere. 1. Model structure and steady-state perturbation calculations. J Geophys Res 90:2283–2312

    Google Scholar 

  • Pearman GI, Etheridge D, deSilva F, Fraser PJ (1986) Evidence of changing concentrations of atmospheric CO2, N2O and CH4 from air bubbles in Antarctic ice. Nature 320:248–250

    Google Scholar 

  • Penkett SA, Jones BMR, Rycroft MJ, Simmons DA (1985) An interhemispheric comparison of the concentrations of bromine compounds in the atmosphere. Nature 318:550–553

    Google Scholar 

  • Poulet G, Laverdet, G, Le Bras G (1986) Rate constant and branching ratio for the reaction of OH and ClO. J Phys Chem 90:159–165

    Google Scholar 

  • Prinn RG, Rasmussen RA, Simmonds PG, Alyea FN, Cunnold DM, Lane BC, Cardelino CA, Crawford AJ (1983) The Atmospheric Lifetime Experiment — 5. Results for CH3CCl3 based on three years data. J Geophys Res 88:8415–8426

    Google Scholar 

  • Quinn TH, Wolf KA, Mooz WE, Hammitt JK, Chesnut TW, Sarma S (1986) Projected use, emissions, and banks of potential ozone-depleting substances. Paper N-2282-EPA, RAND corporation, Santa Monica, CA

    Google Scholar 

  • Ramanathan V (1976) Radiative transfer within the earth's troposphere and stratosphere: a simplified radiative convective model. J Atmos Sci 3:1330–1346

    Google Scholar 

  • Ramanathan V, Coakley Jr JA (1978) Climate modeling through radiative-convective models. Rev Geophys Space Phys 16:465–489

    Google Scholar 

  • Ramanathan V, Dickinson RE (1979) The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the earth-troposphere system. J Atmos Sci 36:1084–1104

    Google Scholar 

  • Ramanathan V, Cicerone RJ, Singh HB, Kiehl JT (1985) Trace gas trends and their potential role in climate change. J Geophys Res 90:5547–5566

    Google Scholar 

  • Ramanathan V, Callis L, Cess R, Singh HB, Isaksen I, Kuhn W, Lacis A, Luther F, Mahlman J, Reck R, Schlesinger M (1987) Climate-chemical interactions and effects of changing atmospheric trace gases. Rev Geophys 25:1441–1482

    Google Scholar 

  • Rasmussen RA, Khalil MAK (1981) Increase in the concentration of atmospheric methane. Atmos Environment 15:883–886

    Google Scholar 

  • Rasmussen RA, Khalil MAK (1984) Atmospheric methane in the recent and ancient atmospheres: concentrations, trends and interhemispheric gradient. J Geophys Res 89:11599–11605

    Google Scholar 

  • Raynaud D, Barnola JM (1985) An Antarctic ice core reveals atmospheric CO2 variations over the past few centures. Nature 315:309–311.

    Google Scholar 

  • Reich PB, Amundson RG (1985) Ambient levels of ozone reduce net photosynthesis in tree and crop species. Science 230:566–570

    Google Scholar 

  • Reid GC, Gags KS (1981) On the annual variation in height of the tropical tropopause. J Atmos Sci 38:1928–1938

    Google Scholar 

  • Rennick MA (1977) The parameterization of tropospheric lapse rates in terms of surface temperature. J Atmos Sci 34:854–862

    Google Scholar 

  • Rinsland CP, Levine JS (1985) Free tropospheric carbon monoxide concentrations in 1950 and 1951 deduced from infrared total column amount measurements. Nature 318:250–254

    Google Scholar 

  • Rinsland CP, Levine JS, Miles T (1985) Concentration of methane in the troposphere deduced from 1951 infrared solar spectra. Nature 318:245–249

    Google Scholar 

  • Roberts RE, Selby JEA, Biberman LM (1976) Infrared continuum absorption by atmospheric water vapor in the 8–12 μm window. Appl Optics 15:2085–2090

    Google Scholar 

  • Rodgers CD, Walshaw CD (1966) The computation of infrared cooling rate in planetary atmospheres. Quart J Roy Met Soc 92:67–92

    Google Scholar 

  • Rossi MJ, Malhotra R, Golden DM (1987) Heterogeneous chemical reaction of chlorine nitrate and water on sulfuric-acid surfaces at room temperature. Geophys Res Lett 14:127–130

    Google Scholar 

  • Rothman LS, Gamache RR, Barbe A, Goldman A, Gillis JR, Brown LR, Toth RA, Flaud JM, Camy-Peyret C (1983) AFGL atmospheric absorption line parameters compilation: 1982 edition. Appl Optics 22:2247–2256

    Google Scholar 

  • Schoeberl MR, Krueger AJ, Newman PA (1986) The morphology of Antarctic total ozone as seen by TOMS. Geophys Res Lett 13:1217–1220

    Google Scholar 

  • Seiler W (1974) The cycle of atmospheric CO Tellus 26:116–135

    Google Scholar 

  • Shemansky DE (1972) CO2 extinction coefficient 1700–3000A. J Phys Chem 82:1582–1587

    Google Scholar 

  • Shettle EP, Fenn RW (1979) Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties. Envir. Res. Papers no. 676, AFGL Tr-79-0214, Air Force Geophys. Lab. Hanscom, Massachusetts

    Google Scholar 

  • Siegenthaler U (1983) Uptake of excess CO2 by an outcrop diffusion model of the ocean. J Geophys Res 88:3599–3608

    Google Scholar 

  • Simmonds PG, Alyea FN, Cardelino CA, Crawford, AJ, Cunnold DM, Lane BC, Lovelock JE, Prinn RG, Rasmussen RA (1983) The Atmospheric Lifetime Experiment — 6. Results for carbon tetrachloride based on three years data. J Geophys Res 88:8427–8441

    Google Scholar 

  • Simonaitis R, Leu MT (1985) An upper limit for the absorption cross section of the oxygen C3Δu→a1Δgtransition. Geophys Res Lett 12:829–832

    Google Scholar 

  • Solomon S, Crutzen PJ, Roble RG (1982) Photochemical coupling between thermosphere and the lower atmosphere. 1. Odd nitrogen from 50 to 120 km. J Geophys Res 87:7206–7220

    Google Scholar 

  • Solomon S, Garcia RR, Rowland FS, Wuebbles DJ (1986) On the depletion of Antarctic ozone. Nature 321:755–758

    Google Scholar 

  • Staley DO, Jurica GM (1976) Flux emissivity tables for water vapor, carbon dioxide and ozone. J Appl Meteorol 9:365–372

    Google Scholar 

  • Statistisches Bundesamt (1985) Statistisches Jahrbuch 1985 für die Bundesrepublik Deutschland Kohlhammer GmbH, Mainz

    Google Scholar 

  • Stauffer B, Fischer G, Neftel A, Oeschger H (1985) Increase of atmospheric methane recorded in Antarctic ice core. Science 229:1386–1388

    Google Scholar 

  • Stolarski RS, Cicerone RJ (1974) Stratospheric chlorine: a possible sink for ozone. Can J Chem 52:1610–1615

    Google Scholar 

  • Stolarski RS, Krueger AJ, Schoeberl MR, McPeters RD, Newman PA, Alpert JC (1986) Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease. Nature 322:808–811

    Google Scholar 

  • Stone PH (1973) The effect of large-scale eddies on climatic change. J Atmos Sci 30:521–529

    Google Scholar 

  • Thompson BA, Harteck P, Reeves Jr RR (1963) Ultraviolet absorption coefficients of CO2, CO, O2, H2O, N2O, NH3, NO, SO2, and CH4 between 1850 and 4000A. J Geophys Res 68:6431–6436

    Google Scholar 

  • Turman BN, Edgar BC (1982) Global lightning distributions at dawn and dusk. J Geophys Res 87:1191–1206

    Google Scholar 

  • United Nations (1984) Demographic Yearbook 1982, New York

  • US Standard Atmosphere (1976) National Oceanic and Atmospheric Administration (NOAA), Washington, D.C., 227 pages (available at NTIS)

  • Volz A, Kley D (1987) Ozone measurements in the 19th century; evaluation of the Montsouris series. Nature (in press)

  • Weiss RW (1981) The temporal and spatial distribution of tropospheric nitrous oxide. J Geophys Res 86:7185–7195

    Google Scholar 

  • Welch RM, Cox SK, Davis JM (1980) Solar radiation and clouds. Meteorol Monogr 17:No. 39, Am Meteor Soc

  • Wigley TMI, Schlesinger ME (1985) An analytical solution for the effect of increasing CO2 on global mean temperature. Nature 315:649–652

    Google Scholar 

  • WMO (1982) The stratosphere 1981, theory and measurements. WMO global ozone research and monitoring project. Report no. 11, World Meteorological Organization, Geneva, 473 pages

    Google Scholar 

  • WMO (1982) Atmospheric ozone 1985, WMO global ozone research and monitoring project. Report no. 16, World Meteorological Organization, Geneva, 1181 pages

    Google Scholar 

  • Wuebbles DJ, McCracken MC, Luther FM (1984) A proposed reference set of scenarios for radiatively active atmospheric constituents. Report TR015, (W-7405-ENG-48), US Department of Energy, Washington, D.C.

    Google Scholar 

  • Yung YL, Pinto JP, Watson RT, Sander SP (1980) Atmospheric bromine and ozone perturbations in the lower stratosphere. J Atmos Sci 37:339–353

    Google Scholar 

  • Zardini D, Raynaud D, Scharffe D, Seiler W (1987) N2O measurements of air extracted from Antarctic ice cores. Presented at Symposium on Ice Core Analysis, Bern

  • Zdunkowski WG (1980) An investigation of the structure of typical two-stream-methods for the calculation of solar fluxes and heating rates in clouds. Beitr Phys Atmosph 53:147–166

    Google Scholar 

  • Zdunkowski WG, Panhans W, Welch RM, Korb GJ (1982) A radiation scheme for circulation and climate models. Beitr Phys Atmosph 55:215–238

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brühl, C., Crutzen, P.J. Scenarios of possible changes in atmospheric temperatures and ozone concentrations due to man's activities, estimated with a one-dimensional coupled photochemical climate model. Climate Dynamics 2, 173–203 (1988). https://doi.org/10.1007/BF01053474

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053474

Keywords

Navigation