Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 220))

Abstract

In this paper we consider the interrelations between friction and fracture in highly brittle materials. First we examine frictional effects in the mechanics of crack formation at elastic and elastic-plastic contacts on brittle surfaces. Then we consider how fundamental intersurface forces manifest themselves as “internal friction” at crack interfaces in “model” solids like mica and glass, with special reference to environmental chemistry. Finally, we examine the controlling role of frictional processes in the strength and toughness of modem ceramic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B.R. Lawn (1992). “Fracture of Brittle Solids”. Cambridge University Press, Cambridge.

    Google Scholar 

  2. B.R. Lawn and T.R. Wilshaw (1975) “Indentation Fracture: Principles and Applications”, J. Mater. Sci. 10 1049–81.

    Article  ADS  Google Scholar 

  3. A.G. Evans and T.R. Wilshaw (1976) “Quasi-Static Solid Particle Damage in Brittle Solids”, Acta Metall. 24 939–56.

    Article  Google Scholar 

  4. B.R. Lawn and S.M. Wiederhorn (1983), “Contact Fracture in Brittle Materials”, in Contact Mechanics and Wear of Rail/Wheel Systems”, pp. 133–47, ed. J. Kalousek, R.V. Dukkipati and G.M. Gladwell. University of Waterloo Press, Vancouver.

    Google Scholar 

  5. F.C. Frank and B.R. Lawn (1967) “On the Theory of Hertzian Fracture”, Proc. Roy. Soc. Lond. A299 291–306.

    ADS  Google Scholar 

  6. F. Auerbach (1891) “Measurement of Hardness”, Ann. Phys. Chem. 43 61–100.

    ADS  Google Scholar 

  7. F.B. Langitan and B.R. Lawn (1969) “Hertzian Fracture Experiments on Abraded Glass Surfaces as Definitive Evidence of Auerbach’s Law”, J. Appl. Phys. 40 4009–17.

    Article  ADS  Google Scholar 

  8. F.C. Roesler (1956) “Brittle Fractures Near Equilibrium”, Proc. Phys. Soc. Lond. B69 981–92.

    ADS  Google Scholar 

  9. G.E. Hamilton and L.E. Goodman (1966) “The Stress Field Created by a Sliding Contact”, J. Appl. Mech. 33 371–76.

    Article  ADS  Google Scholar 

  10. B.R. Lawn (1967) “Partial Cone Crack Formation in a Brittle Material Loaded with a Sliding Spherical Indenter”, Proc. Roy. Soc. Lond. A299 307–16.

    ADS  Google Scholar 

  11. D.R. Gilroy and W. Hirst (1969) “Brittle Fracture of Glass Under Normal and Sliding Loads”, Brit. J. Appl. Phys. 2 1784–87.

    Google Scholar 

  12. B.R. Lawn, S.M. Wiederhorn and D.E. Roberts (1984), “Effect of Sliding Friction Forces on the Strength of Brittle Materials”, J. Mater. Sci. 19 2561–69.

    Article  ADS  Google Scholar 

  13. J.T. Hagan and M.V. Swain (1976) “Indentation Plasticity and the Ensuing Fracture of Glass”, J. Phys. D: Appl. Phys. 9 2201–14.

    Article  ADS  Google Scholar 

  14. J. Hagan (1980) “Shear Deformation Under Pyramidal Indentations in Soda-Lime Glass, J. Mater. Sci. 15 1417–24.

    Article  ADS  Google Scholar 

  15. B.R. Lawn, T.P. Dabbs and C.J. Fairbanks (1983) “Kinetics of Shear-Activated Crack Initiation in Soda-Lime Glass”, J. Mater. Sci. 18 2785–97.

    Article  ADS  Google Scholar 

  16. T.P. Dabbs, C.J. Fairbanks and B.R. Lawn (1984) “Subthreshold Indentation Flaws in the Study of Fatigue Properties of Ultrahigh Strength Glass”, in Methods for Assessing the Strength and Reliability of Brittle Materials, pp. 142–52, ed. S.W. Freiman and C.M. Hudson. A.S.T.M. Special Technical Publication 844, Philadelphia.

    Google Scholar 

  17. B.R. Lawn and A.G. Evans (1977) “A Model for Crack Inititation in Elastic/Plastic Indentation Fields”, J. Mater. Sci. 12 2195–99.

    Article  ADS  Google Scholar 

  18. K. Puttick (1980) “The Correlation of Fracture Transitions”, J. Phys. D: Appl. Phys. 13 2249–62.

    Article  ADS  Google Scholar 

  19. B.R. Lawn, A.G. Evans and D.B. Marshall (1980), “Elastic/Plastic Indentation Damage in Ceramics: The MedianlRadial Crack System”, J. Amer. Ceram. Soc. 63 574–81.

    Article  Google Scholar 

  20. S.M. Wiederhorn (1967) “Influence of Water Vapor on Crack Propagation in SodaLime Glass”, J. Amer. Ceram. Soc. 50 407–14.

    Article  Google Scholar 

  21. S.M. Wiederhorn and L.H. Bolz (1970) “Stress Corrosion and Static Fatigue of Glass”, J. Amer. Ceram. Soc. 53 543–48.

    Article  Google Scholar 

  22. K-T. Wan, N. Aimard, S. Lathabai, R.G. Horn and B.R. Lawn (1990) “Interfacial Energy States of Moisture-Exposed Cracks in Mica”, J.Mater. Res. 5 172–82.

    Article  ADS  Google Scholar 

  23. K-T. Wan and B.R. Lawn (1990) “Surface Forces in Mica in the Presence of Capillary Condensation”, Acta Metall. 38 2073–83.

    Article  Google Scholar 

  24. K-T. Wan, D.T. Smith and B.R. Lawn (1992) “Contact and Adhesion Energies of Mica-Mica, Silica-Silica and Mica-Silica Interfaces in Dry and Moist Atmospheres”, J. Amer. Ceram. Soc., in press.

    Google Scholar 

  25. J.W. Obreimoff (1930) “The Splitting Strength of Mica”, Proc. Roy. Soc. Lond. A127 290–97.

    ADS  Google Scholar 

  26. A.I. Bailey and S.M. Kay (1967) “A Direct Measurement of the Influence of Vapour, of Liquid and of Oriented Monolayers on the Interfacial Energy of Mica”, Proc. Roy. Soc. Lond. A301 3421–27.

    Google Scholar 

  27. S.W. Bailey (1984) “Review of Cation Ordering in Micas”, Clays and Clay Minerals 32 81–92.

    Article  Google Scholar 

  28. G.L. Gaines and D. Tabor (1956) “Surface Adhesion and Elastic Properties of Mica”, Nature 178 1304–05.

    Article  ADS  Google Scholar 

  29. H. Christenson (1988) “Adhesion Between Surfaces in Undersaturated Vapours-A Reexamination of the Influence of Meniscus Curvature and Surface Forces”, J. Colloid Interf. Sci. 121 170–78.

    Article  Google Scholar 

  30. D. Maugis (1985) “Subcritical Crack Growth, Surface Energy, Fracture Toughness, Stick-Slip and Embrittlement”, J. Mater. Sci. 20 3041–73.

    Article  ADS  Google Scholar 

  31. A. Fogden and L.R. White (1990) “Contact Elasticity in the Presence of Capillary Condensation: I. The Nonadhesive Hertz Problem”, J. Colloid Interf. Sci. 138 414–30.

    Article  Google Scholar 

  32. D. Maugis (1991) “Adhesion of Spheres: the JKR-DMT Transition Using a Dugdale Model”, J. Colloid Interf. Sci. 150, 243–269.

    Article  Google Scholar 

  33. D.T. Smith and R.G. Horn, “The Effect of Charge Transfer on the Adhesion Between Dissimilar Materials”, in preparation.

    Google Scholar 

  34. K-T. Wan, S. Lathabai and B.R. Lawn (1990) “Crack Velocity Functions and Thresholds in Brittle Solids”, J. Europ. Ceram. Soc. 6 259–68.

    Article  Google Scholar 

  35. B.R. Lawn, D.H. Roach and R.M. Thomson (1987) “Thresholds and Reversibility in Brittle Cracks: An Atomistic Surface Force Model”, J. Mater. Sci. 22 4036–50.

    Article  ADS  Google Scholar 

  36. Y-W. Mai and B.R. Lawn (1986) “Crack Stability and Toughness Characteristics in Brittle Materials”, Ann. Rev. Mater. Sci. 16 415–39.

    Article  ADS  Google Scholar 

  37. J.E. Ritter (1974) “Engineering Design and Fatigue Failure of Brittle Materials”, in Fracture Mechanics of Ceramics, Vol. 4, pp. 667–86, ed. R.C. Bradt, D.P.H. Hasselman and F.F. Lange. Plenum Press, New York.

    Google Scholar 

  38. B.R. Lawn, D.B. Marshall, P. Chantikul and G.R. Anstis (1980) “Indentation Fracture: Applications in the Assessment of Strength of Ceramics”, J. Aust. Ceram. Soc. 16 4–9.

    Google Scholar 

  39. B.R. Lawn, B.J. Hockey and S.M. Wiederhorn (1980) “Atomically Sharp Cracks in Brittle Solids: An Electron Microscopy Study”, J. Mater. Sci. 15 1207–23.

    Article  ADS  Google Scholar 

  40. J. Cook and J.E. Gordon (1964) “A Mechanism for the Control of Crack Propagation in all Brittle Systems”, Proc. Roy. Soc. Lond. A282 508–20.

    ADS  Google Scholar 

  41. S.J. Bennison and B.R. Lawn (1989) “Role of Interfacial Grain-Bridging Sliding Friction in the Crack-Resistance and Strength Properties of Nontransforming Ceramics”, Acta Metall. 37 2659–71.

    Article  Google Scholar 

  42. A.G. Evans (1990) “Perspectives on the Development of High-Toughness Ceramics”, J. Amer. Ceram. Soc. 73 187–206.

    Article  Google Scholar 

  43. Y-W. Mai and B.R. Lawn (1987) “Crack-Interface Grain Bridging as a Fracture Resistance Mechanism in Ceramics: II. Theoretical Fracture Mechanics Model”, J. Amer. Ceram. Soc. 70 289–94.

    Article  Google Scholar 

  44. F. Deuerler, R. Knehans and R. Steinbrech (1986) “Testing Methods and CrackResistance Behaviour of Al2O3J. de Physique C1 617–20.

    Google Scholar 

  45. P.L. Swanson, C.J. FairbanJci, B.R. Lawn, Y-W. Mai and B.J. Hockey (1987) “Crack-Interface Grain Bridging as a Fracture Resistance Mechanism in Ceramics: I. Experimental Study on Alumina”, J. Amer. Ceram. Soc. 70 279–89.

    Article  Google Scholar 

  46. J. Rodel, J. Kelly and B.R. Lawn (1990) “In Situ Measurements of Bridged Cracks Interfaces in the SEM”, J. Amer. Ceram. Soc. 73 3313–18.

    Article  Google Scholar 

  47. G. Vekinis, M.F. Ashby and P.W.R. Beaumont (1990) “R-Curve Behaviour of Al2O3Ceramics”, Acta Metall. 38 1151–62.

    Article  Google Scholar 

  48. S. Lathabai, J. Rodel and B.R. Lawn (1991) “Cyclic Fatigue From Frictional Degradation at Bridging Grains in Alumina”, J. Amer. Ceram. Soc. 74 3340–48.

    Article  Google Scholar 

  49. S.J. Bennison, J. Rodel, S. Lathabai and B.R. Lawn (1991) “Microstructure, Toughness Curves and Mechanical Properties of Alumina Ceramics”, in Toughening Mechanisms in Quasi-Brittle Materials, pp. 209–33, ed. S.P. Shah. K1uwer Academic Publishers, Dordrecht, the Netherlands.

    Chapter  Google Scholar 

  50. D.B. Marshall (1984) “An Indentation Method for Measuring Matrix-Fiber Frictional Stresses in Ceramic Composites”, J. Amer. Ceram. Soc. 67 C259–60.

    Article  Google Scholar 

  51. P.D. Jero and R.J. Kerans (1991) “Effect of Interface Roughness on the Frictional Shear Stress Measured Using a Pushout Test”, J. Amer. Ceram. Soc., in press.

    Google Scholar 

  52. E.R. Fuller, E.P. Butler and W.C. Carter (1991) “Determination of Fiber-Matrix Interfacial Properties of Importance to Ceramic Composite Toughening”, in Toughening Mechanisms in Quasi-Brittle Materials, pp. 385–403, ed. S.P. Shah. K1uwer Academic Publishers, Dordrecht, the Netherlands.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lawn, B. (1992). Friction Processes in Brittle Fracture. In: Singer, I.L., Pollock, H.M. (eds) Fundamentals of Friction: Macroscopic and Microscopic Processes. NATO ASI Series, vol 220. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2811-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2811-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5249-8

  • Online ISBN: 978-94-011-2811-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics