Skip to main content
Log in

Thresholds and reversibility in brittle cracks: An atomistic surface force model

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new picture of environmentally-enhanced fracture in highly brittle solids is presented. It is asserted that the fundamental relations for crack growth are uniquely expressible in terms of the surface force functions that govern the interactions between separating walls in an intrusive medium. These functions are the same, in principle, as those measured directly in the newest submolecular-precision microbalance devices. A fracture mechanics model, based on a modification of the Barenblatt cohesive zone concept, provides the necessary framework for formalizing this link between crack relations and surface force functions. The essence of the modification is the incorporation of an element of discreteness into the surface force function, to allow for geometrical constraints associated with the accommodation of intruding molecules at the crack walls. The model accounts naturally for the existence of zero-velocity thresholds; further, it explains observed shifts in these thresholds in cyclic load-unload-reload experiments, specifically the reduction in applied loading needed to propagate cracks through healed as compared to virgin interfaces. The threshold configurations emerge as thermodynamic equilibrium states, definable in terms of interfacial surface energies. Crack velocity data for cyclic loading in mica, fused silica and sapphire are presented in support of the model. Detailed considerations of the theoretical crack profiles in these three materials, with particular attention to the atomic structure of the “lattice” (elastic sphere approximation) at the interfaces, shows that intruding molecules must encounter significant diffusion barriers as they penetrate toward the tip region. It is concluded that such diffusion barriers control the fracture kinetics at low driving forces. At threshold the barriers become so large that the molecules can no longer penetrate to the tip region. This leads to a crucial prediction of our thesis, that the cohesive zone consists of two distinct parts: a “protected” primary zone adjacent to the tip, where intrinsic binding forces operate without influence from environmental influences; and a “reactive” secondary zone more remote from the tip, where extrinsic interactions with intruding chemical species are confined. The prevailing view of chemically enhanced brittle fracture, that crack velocity relations are determined by a concerted reaction with reactive species at a single line of crack-tip bonds, is seen as a limiting case of our model, operative at driving forces well above the threshold level. The new description offers the potential for using brittle fracture as a tool for investigating surface forces themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. R. Lawn andT. R. Wilshaw, “Fracture of Brittle Solids” (Cambridge University Press, London, 1975) Ch. 2.

    Google Scholar 

  2. J. R. Rice,J. Mech. Phys. Solids 26 (1977) 61.

    Google Scholar 

  3. E. D. Case, J. R. Smyth andO. Hunter, in “Fracture Mechanics of Ceramics”, Vol. 5, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1983) p. 507.

    Google Scholar 

  4. J. W. Obreimoff,Proc. R. Soc. A127 (1930) 290.

    Google Scholar 

  5. A. I. Bailey,J. Appl. Phys. 32 (1961) 1407.

    Google Scholar 

  6. P. J. Bryant, L. H. Taylor andP. L. Gutshall, in “Transactions of Tenth National Vacuum Symposium” (Macmillan, New York, 1963) p. 21.

    Google Scholar 

  7. A. I. Bailey andS. M. Kay,Proc. R. Soc. A301 (1967) 47.

    Google Scholar 

  8. R. B. Leonesio,J. Amer. Ceram. Soc. 55 (1972) 437.

    Google Scholar 

  9. S. M. Wiederhorn andP. R. Townsend,ibid. 53 (1970) 99.

    Google Scholar 

  10. G. L. Cheeseman andB. R. Lawn,Phys. Status Solidi 3 (1970) 951.

    Google Scholar 

  11. B. Stavrinidis andD. G. Holloway,Phys. Chem. Glasses 24 (1983) 19.

    Google Scholar 

  12. T. A. Michalske andE. R. Fuller,J. Amer. Ceram. Soc. 11 (1985) 586.

    Google Scholar 

  13. B. J. Hockey andB. R. Lawn,J. Mater. Sci. 10 (1975) 1275.

    Google Scholar 

  14. B. R. Lawn,Appl. Phys. Lett. 47 (1985) 809.

    Google Scholar 

  15. D. R. Clarke, B. R. Lawn andD. H. Roach, in “Fracture Mechanics of Ceramics”, Vol. 8, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1986) p. 341.

    Google Scholar 

  16. D. H. Roach, D. M. Heuckeroth andB. R. Lawn,J. Colloid Interface Sci. 114 (1986) 292.

    Google Scholar 

  17. T. A. Michalske, in “Fracture Mechanics of Ceramics”, Vol. 5, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1983) p. 277.

    Google Scholar 

  18. R. J. Charles andW. B. Hillig, in “Symposium sur la Resistance Mechanique du Verre et les Moyuns de L'Ameliorer” (Union Sciences Continentale du Verre, Charleroi, Belgium, 1962) p. 511.

    Google Scholar 

  19. R. M. Thomson.Ann. Rev. Mater. Sci. 3 (1973) 31.

    Google Scholar 

  20. B. R. Lawn, A. C. Gonzalez andK. Jakus,J. Amer. Ceram. Soc. 68 (1985) 25.

    Google Scholar 

  21. D. H. Roach andA. R. Cooper,ibid. 68 (1985) 632.

    Google Scholar 

  22. G. I. Barenblatt,Adv. Appl. Math. 7 (1962) 55.

    Google Scholar 

  23. R. M. Thomson andB. R. Lawn, in preparation.

  24. J. N. Israelachvili, “Intermolecular and Surface Forces” (Academic, London, 1985).

    Google Scholar 

  25. A. W. Adamson, “Physical Chemistry of Surfaces” (Wiley, New York, 1982).

    Google Scholar 

  26. B. V. Deryaguin andL. Landau,Acta Phys. Chem. USSR 14 (1948) 633.

    Google Scholar 

  27. E. J. W. Verwey andT. Th. G. Overbeek, “Theory of the Stability of Lyophobic Colloids” (Elsevier, Amsterdam, 1948).

    Google Scholar 

  28. D. Tabor andR. H. S. Winterton,Proc. R. Soc. A312 (1969) 435.

    Google Scholar 

  29. J. N. Israelachvili andD. Tabor,ibid. A331 (1972) 19.

    Google Scholar 

  30. J. N. Sraelachvili andG. E. Adams,J. Chem. Soc., Faraday Trans. 174 (1979) 975.

    Google Scholar 

  31. R. G. Horn andJ. N. Israelachvili,Chem. Phys. Lett. 71 (1980) 192.

    Google Scholar 

  32. J. N. Israelachvili,Phil. Mag. A43 (1981) 753.

    Google Scholar 

  33. H. K. Christenson, R. G. Horn andJ. N. Israelachvili,J. Colloid Interface Sci. 88 (1982) 79.

    Google Scholar 

  34. R. G. Horn andJ. N. Israelachvili,J. Chem. Phys. 75 (1981) 1400.

    Google Scholar 

  35. E. Orowan,Nature 154 (1944) 341.

    Google Scholar 

  36. R. F. Cook,J. Mater. Res. in press.

  37. R. M. Thomson, in “Solid State Physics”, edited by H. Ehrenrich and D. Turnbull (Academic, New York, 1986) vol. 39, p. 1.

    Google Scholar 

  38. D. B. Marshall, B. N. Cox andA. G. Evans,Acta Metall. 33 (1985) 2013.

    Google Scholar 

  39. R. G. Horn, J. N. Israelachvili andF. Pribac,J. Colloid Interface Sci. in press.

  40. E. R. Fuller andR. M. Thomson, in “Fracture Mechanics of Ceramics”, Vol. 3, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1978) p. 507.

    Google Scholar 

  41. E. R. Fuller, B. R. Lawn andR. M. Thomson,Acta Metall. 28 (1980) 1407.

    Google Scholar 

  42. D. Y. C. Chan andR. G. Horn,J. Chem. Phys. 83 (1985) 5311.

    Google Scholar 

  43. B. R. Lawn andT. R. Wilshaw, “Fracture of Brittle Solids” (Cambridge University Press, London, 1975) Chs. 1, 3.

    Google Scholar 

  44. M. T. Vaughan andS. Guggenheim,J. Geophys. Res. 91 (1986) 4647.

    Google Scholar 

  45. B. R. Lawn andT. R. Wilshaw. “Fracture of Brittle Solids” (Cambridge University Press, London, 1975) Ch, 8.

    Google Scholar 

  46. B. J. Pletka, E. R. Fuller andB. G. Koepke, in “Fracture Mechanics Applied to Brittle Materials”, edited by S. W. Freiman (ASTM Special Technical Publication 678) (American Society for Testing and Materials, Philadelphia, 1978) p. 19.

    Google Scholar 

  47. S. M. Wiederhorn,Int. J. Fract. Mech. 4 (1968) 171.

    Google Scholar 

  48. T. A. Michalske, B. C. Bunker andS. W. Freiman,J. Amer. Ceram. Soc. 69 (1986) 721.

    Google Scholar 

  49. L. Pauling, “The Nature of the Chemical Bond” (Cornell University Press, Ithaca, 1960).

    Google Scholar 

  50. G. R. Irwin, in “Handbuch der Physik”, Vol. 6 (Springer, Berlin, 1958) p. 551.

    Google Scholar 

  51. W. L. Bragg andG. F. Claringbull, “Crystal Structures of Minerals”, Vol. IV (Bell, London, 1965) Chs. 6, 8.

    Google Scholar 

  52. P. M. Claesson, P.Herder, P. Stenius, J. C. Erikson andR. M. Pashley,J. Colloid Interface Sci. 109 (1986) 31.

    Google Scholar 

  53. R. K. Iler, “The Colloidal Chemistry of Silica and Silicates” (Cornell University Press, Ithaca, 1955).

    Google Scholar 

  54. T. A. Michalske andS. W. Freiman,Nature 295 (1982) 511.

    Google Scholar 

  55. M. L. Kronberg,Acta Metall. 5 (1957) 507.

    Google Scholar 

  56. S. M. Wiederhorn,J. Amer. Ceram. Soc. 52 (1969) 485.

    Google Scholar 

  57. S. M. Wiederhorn, B. J. Hockey andD. E. Roberts,Phil. Mag. 28 (1973) 783.

    Google Scholar 

  58. R. Cannon, in “Advances in Ceramics”, Vol. 10, edited by W. D. Kingery (American Ceramic Society, Columbus, 1984) p. 818.

    Google Scholar 

  59. D. H. Roach, S. Lathabai andB. R. Lawn,J. Amer. Ceram. Soc., in press.

  60. R. M. Barrer, “Zeolites and Clay Minerals as Sorbents and Molecular Sieves” (Academic, London, 1978).

    Google Scholar 

  61. D. Maugis,J. Mater. Sci. 20 (1985) 3041.

    Google Scholar 

  62. G. L. Gaines andD. Tabor,Nature 178 (1956) 1304.

    Google Scholar 

  63. A. I. Bailey andH. Daniels,J. Phys. Chem. 77 (1973) 501.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawn, B.R., Roach, D.H. & Thomson, R.M. Thresholds and reversibility in brittle cracks: An atomistic surface force model. J Mater Sci 22, 4036–4050 (1987). https://doi.org/10.1007/BF01133355

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01133355

Keywords

Navigation