Skip to main content

The use of stoichiometric relations for the description and analysis of microbial cultures

  • Chapter
Quantitative Aspects of Growth and Metabolism of Microorganisms
  • 195 Accesses

Abstract

A general method is described, which enables the derivation of predictive fermentation equations for any microbiological process. The method combines the well-known achievements of the elemental balance approach with microscopic, metabolic balances and biochemical restrictions, using the key intermediates concept. Special attention is paid to the distinction between independent and dependent flow variables of a system. The method is fully illustrated for the very simple example of heterotrophic growth on a single substrate without product formation. Other examples include growth on mixed substrates and the description of catabolic and anabolic product formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiba S & Matsuoka M (1979) Identification of metabolic model: citrate production from glucose by Candida lipolytica. Biotechnol. Bioeng. 21: 1373–1386

    Article  CAS  Google Scholar 

  • Babel W & Müller RH (1985a) Correlation between cell composition and carbon conversion efficiency. Appl. Microbiol. Biotechnol. 22: 201–207

    Article  CAS  Google Scholar 

  • Babel W & Müller RH (1985b) Mixed substrate utilization in microorganisms: biochemical aspects and energetics. J. Gen. Microbiol. 131: 39–45

    CAS  Google Scholar 

  • Babel W (1986) Increase and limits of growth yields for heterotrophic microorganisms. Acta Biotechnol. 6: 305–309

    Article  CAS  Google Scholar 

  • Bauchop T & Elsden SR (1960) J. Gen. Microbiol. 23: 457–479

    Article  PubMed  CAS  Google Scholar 

  • Bonnet JABAF, De Kok HE & Roels JA (1980) The growth of Saccharomyces cerevisiae CBS 426 on mixtures of glucose and ethanol: a model. A. van Leeuwenhoek 46: 565–576

    Article  CAS  Google Scholar 

  • Bonnet JABAF, Koellman CJW, Dekkers-De Kok HE & Rods JA (1984) The growth of Saccharomyces cerevisiae CBS 426 on mixtures of glucose and succinic acid: a model. Biotechnol. Bioeng. 26: 269–272

    Article  PubMed  CAS  Google Scholar 

  • Bronson R (1989) Theory and problems of matrix operations. Schaum’s Outline Series. McGraw-Hill Book Company, New York

    Google Scholar 

  • De Vries S & Grivell LA (1988) Purification and characterization of a rotenone-insensitive NADH: Q6 oxidoreductase from mitochondria of Saccharomyces cerevisiae. Eur. J. Biochem. 176: 377–384

    Article  PubMed  Google Scholar 

  • Erickson LE, Minkevich IG, Eroshin VK (1978) Application of mass and energy balance regularities in fermentation. Biotechnol. Bioeng. 20: 1595–1621

    Article  CAS  Google Scholar 

  • Erickson LE (1979) Energetic efficiency of biomass and product formation. Biotechnol. Bioeng. 21: 725–743

    Article  CAS  Google Scholar 

  • Geurts TGE, De Kok HE & Rods JA (1980) A quantitative description of the growth of Saccharomyces cerevisiae CBS 436 on a mixed substrate of glucose and ethanol. Biotechnol. Bioeng. 22: 2031–2043

    Article  CAS  Google Scholar 

  • Gommers PJF, Van Schie BJ, Van Dijken JP & Kuenen JG (1988) Biochemical limits to microbial growth yields: an analysis of mixed substrate utilization. Biotechnol. Bioeng. 32: 86–94

    Article  CAS  Google Scholar 

  • Humphrey AE (1974) Current developments in fermentation. Chem. Eng. 81(26): 98–112

    CAS  Google Scholar 

  • Minkevich IG & Eroshin VK (1973) Productivity and heat generation of fermentation under oxygen limitation. Folia. Microbiol. 18: 376–386

    Article  CAS  Google Scholar 

  • Minkevich IG (1983) Mass-energy balance for microbial product synthesis - biochemical and cultural aspects. Biotechnol. Bioeng. 25: 1267–1293

    Article  PubMed  CAS  Google Scholar 

  • Minkevich IG (1985) Estimation of available efficiency of microbial growth on methanol and ethanol. Biotechnol. Bioeng. 27: 792–799

    Article  PubMed  CAS  Google Scholar 

  • Müller RH, Sysoev OV & Babel W (1986) Use of formate gradients for improving biomass yield of Pichia pinus growing continuously on methanol. Appl. Microbiol. Biotechnol. 25: 238–244

    Article  Google Scholar 

  • Niranjan SC & San K-Y (1989) Analysis of a framework using material balances in metabolic pathways to elucidate cellular metabolism. Biotechnol. Bioeng. 34: 496–501

    Article  CAS  Google Scholar 

  • Oner MD, Erickson LE & Yang SS (1983) Estimation of true growth and product yields in aerobic cultures. Biotechnol. Bioeng. 25: 631–646

    Article  CAS  Google Scholar 

  • Oura E (1972) The effects of aeration on the energetics and biochemical composition of baker’s yeast. PhD thesis, University of Helsinki

    Google Scholar 

  • Papoutsakis ET (1984) Equations and calculations for fermentations of butyric acid bacteria. Biotechnol. Bioeng. 26: 174–187

    Article  PubMed  CAS  Google Scholar 

  • Papoutsakis ET & Meyer CL (1985a) Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations. Biotechnol. Bioeng. 27: 50–66

    Article  CAS  Google Scholar 

  • Papoutsakis ET & Meyer CL (1985b) Fermentation equations for propionic acid bacteria and production of assorted oxychemicals from various sugars. Biotechnol. Bioeng. 25: 76–80

    Google Scholar 

  • Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc. Roy. Soc. London, Ser. B 163: 224–231

    Article  CAS  Google Scholar 

  • Rods JA (1980) Application of macroscopic principles to micro-bial metabolism. Biotechnol. Biocng. 22: 2457–2514

    Google Scholar 

  • Rods JA (1983) Energetics and kinetics in Biotechnology (p 117). Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  • Solomon BO, Erickson LE, Hess JE & Yang SS (1982) Maximum likelihood estimation of growth yields. Biotechnol. Bioeng. 24: 633–649

    Article  PubMed  CAS  Google Scholar 

  • Solomon BO, Oner MD, Erickson LE & Yang SS (1984) Estimation of parameters where dependent observations are related by equality constraints. AIChE Journal 30: 747–757

    Article  CAS  Google Scholar 

  • Stouthamer AH (1973) A theoretical study on the amount of ATP required for synthesis of microbial cell material. A. van Leeuwenhoek 39: 545–565

    Article  CAS  Google Scholar 

  • Stouthamer AH & Bettenhaussen CW (1973) Utilization of energy for growth and maintenance in continuous and batch culture of micro-organisms. Biochim. Biophys. Acta 301: 53–70

    CAS  Google Scholar 

  • Stouthamer AH (1979) The search for correlation between theoretical and experimental growth yields. In: Quayle JR (Ed) Intern. Rev. Biochem., Vol 21, University Park Press, Baltimore

    Google Scholar 

  • Stouthamer AH & Van Verseveld HW (1985) Stoichiometry of microbial growth. In: Bull AT & Dalton H (Eds) Comprehensive Biotechnology, Vol 1 (pp 215–238). Pergamon Press, Oxford

    Google Scholar 

  • Tempest DW & Neijssel OM (1984) The status of YATP and maintenance energy as biologically interpretable phenomena. Ann. Rev. Microbiol. 38: 459–486

    Article  CAS  Google Scholar 

  • Tsai SP & Lee YH (1988a) Application of metabolic pathway stoichiometry to statistical analysis of bioreactor measurement data. Biotechnol. Bioeng. 32: 713–715

    Article  CAS  Google Scholar 

  • Tsai SP & Lee YH (1988b) Application of Gibbs’ rule and a simple pathway method to microbial stoichiometry. Biotechnol. Progr. 4: 82–88

    Article  CAS  Google Scholar 

  • Tsai SP & Lee YH (1989) A criterion for selecting fermentation stoichiometry methods. Biotechnol. Bioeng. 33: 1347–1349

    Article  PubMed  CAS  Google Scholar 

  • Van Verseveld HW & Stouthamcr AH (1980) Two-(carbon) substrate-limited growth of Paracoccus denitrificans. A direct method to determine the P/O ratio in growing cells. FEMS Microbiol. Lett. 7: 207–211

    Article  Google Scholar 

  • Van Verseveld HW, De Hollander JA, Frankena J, Braster M, Leeuwerik FJ & Stouthamer AH (1986) Modelling of microbial substrate conversion, growth and product formation in a recycling fermentor. A. van Leeuwenhoek 52: 325–342

    Article  Google Scholar 

  • Verhoff FH & Spradlin JE (1976) Mass and energy balance analysis of metabolic pathways applied to citric acid production by Aspergillus niger. Biotechnol. Bioeng. 18: 425–432

    Article  CAS  Google Scholar 

  • Wang NS & Stephanopoulos G (1983) Application of macroscopic balances to the identification of gross measurement errors. Biotechnol. Bioeng. 25: 2177–2208

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de Hollander, J.A. (1992). The use of stoichiometric relations for the description and analysis of microbial cultures. In: Stouthamer, A.H. (eds) Quantitative Aspects of Growth and Metabolism of Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2446-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2446-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5079-1

  • Online ISBN: 978-94-011-2446-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics