Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 415))

Abstract

A pedagogical review of the current theoretical understanding of various collective phenomena in materials with quenched disorder is given. The emphasis is on the nature of ordered phases, their equilibrium dynamics, and development of long-range order and other non-equilibrium dynamic phenomena. The important role played by domain walls in pure and random magnets is used as the primary example, but the concepts developed in this context are applied, briefly, to spin glasses and to the vortex glass phase of dirty Type II superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hohenberg, P.C. and B.I. Halperin (1977), Rev. Mod. Phys. 49, 435.

    Article  ADS  Google Scholar 

  2. Lifshitz, I.M. (1962), Soy. Phys.—JETP 15, 939.

    Google Scholar 

  3. For a pedagogical review of the theory of random magnets, see Fisher, D.S., G.M. Grinstein and A. Khurana (Dec., 1988 ), Phys. Today 41: 12, 56.

    Article  ADS  Google Scholar 

  4. In random systems, especially spin glasses, defining ground states of infinite systems is somewhat tricky and itself illuminates some of the issues. See Huse, D.A. and D.S. Fisher (1987), J. Phys. A 20, L997.

    Google Scholar 

  5. Huse, D.A. and C.L. Henley (1984), Phys. Rev. Lett. 54, 2708; and D.A. Huse, C.L. Henley and D.S. Fisher (1985), Phys. Rev. Lett. 55, 2924.

    Article  ADS  Google Scholar 

  6. Fisher, M.E. (1967), Physics 3, 255.

    Google Scholar 

  7. Polyakov, A.M. (1975), Phys. Lett. B 59, 79.

    Article  MathSciNet  ADS  Google Scholar 

  8. Widom, B. (1965), J. Chem. Phys. 43, 3898.

    Article  ADS  Google Scholar 

  9. Grinstein, G. and A. Luther (1976), Phys. Rev. B 13, 1329.

    Article  ADS  Google Scholar 

  10. This is analogous to the so-called “universal conductance fluctuations” in disordered metallic films. See Lee, P.A. and A.D. Stone (1985), Phys. Rev. Lett. 55, 1622.

    Google Scholar 

  11. Ludwig, A.W.W. (1990), Nucl. Phys. B 330, 639.

    Article  MathSciNet  ADS  Google Scholar 

  12. Fisher, D.S. and D.A. Huse (1988), Phys. Rev. B 38, 386; J. Phys. A 20, L1005 (1987); M. Aizenman and D.S. Fisher, unpublished.

    Google Scholar 

  13. For a recent review of spin glasses, see Binder, K. and A.P. Young (1986), Rev. Mod. Phys. 58, 801.

    Article  ADS  Google Scholar 

  14. Parisi, G. (1979), Phys. Rev. Lett. 43, 1574; Mézard, G. Parisi, N. Sourlas, G. Toulouse and M. Virasoro (1984), Phys. Rev. Lett. 52, 1156, and J. Physique 45, 843.

    MathSciNet  Google Scholar 

  15. Anderson, P.W. and C.M. Pond (1978), Phys. Rev. Lett. 40, 903; J.R. Banavar and M. Cieplak (1983), J. Phys. C 16, L755; W.L. McMillan (1985), Phys. Rev. B 31, 340; A.J. Bray and M.A. Moore (1985), Phys. Rev. B31, 631.

    Google Scholar 

  16. Fisher, D.S. and D.A. Huse (1988), Phys. Rev. B 38, 373.

    Article  ADS  Google Scholar 

  17. Bray, A.J. and M.A. Moore (1987), Phys. Rev. Lett. 58, 57.

    Article  ADS  Google Scholar 

  18. Balents, L. and D.S. Fisher, submitted to Phys. Rev. B.

    Google Scholar 

  19. Fisher, D.S., unpublished.

    Google Scholar 

  20. Chayes, J.T., L. Chayes, D.S. Fisher and T. Spencer (1986), Phys. Rev. Lett. 57, 299; Comm. Math. Phys. 1 20, 501 (1989).

    MathSciNet  Google Scholar 

  21. Fisher, D.S. (1986), Phys. Rev. Lett. 56, 1964, and references therein.

    Article  ADS  Google Scholar 

  22. Fisher, D.S. and D.A. Huse (1991), Phys. Rev. B 43, 10728, and references therein.

    Article  ADS  Google Scholar 

  23. Schulz, U., J. Villain, E. Brézin and H. Orland (1988), J. Stat. Phys. 51, 1.

    Article  ADS  MATH  Google Scholar 

  24. Mézard, M. (1990), J. Physique 51, 1831; M. Mézard and G. Parisi, J. Physique Il, 809 (1991); M. Mézard, private communication.

    Google Scholar 

  25. Kardar, M. and Y-C Zhang (1987), Phys. Rev. Lett 58, 2087.

    Article  ADS  Google Scholar 

  26. See E.G., Hwa, T. and E. Frey, (1991), Phys. Rev. A 44, 7873, and references therein.

    Article  ADS  Google Scholar 

  27. Huse, D.A. and D.S. Fisher (1987), Phys. Rev. B 35, 684.

    Article  ADS  Google Scholar 

  28. “Stretched exponential” decay of correlations is often thought to be characteristic of “glassy” behavior or “hierarchies” of relaxation times [see e.g. Palmer, R.G., D.L. Stein, E. Abrahams and P.W. Anderson (1984), Phys. Rev. Lett. 53, 958.], but we see that it occurs in the pure 2D Ising model!

    Google Scholar 

  29. Villain, J. (1984), Phys. Rev. Lett. 52, 1543. G. Grinstein and J. Fernandez (1984), Phys. Rev. B 29, 6389, consider the effects of a discrete lattice. The effects of rare regions on the coarsening have been shown to be small by D.S. Fisher, unpublished.

    Google Scholar 

  30. Fisher, D.S. (1987), J. Appl. Phys. 61, 3672.

    Article  ADS  Google Scholar 

  31. Refrigier, P.L., E. Vincent, J. Hammann and M. Ocio (1987), J. Physique 48, 1533; M. Alba, J. Hammann, M. Ocio, P.L. Refrigier and H. Bouchiat (1987), J. Appl. Phys. 61, 3683.

    Google Scholar 

  32. Nordblad, P., P. Svendlindh, P. Granberg and L. Lundgren (1987), Phys. Rev. B 34, 7150.

    Article  ADS  Google Scholar 

  33. Nattermann, T., S. Stepanow, L-H Tang and H. Leschom (1992), J. Physique I12, 1483.

    Article  Google Scholar 

  34. Nattermann, T., S. Stepanow, L-H Tang and H. Leschom (1992), J. Physique I12, 1483.

    Article  Google Scholar 

  35. Rubio, M.A., C.A. Edwards, A. Dougherty and J.P. Gollub (1989), Phys. Rev. Lett. 63, 1685; V.K. Horvath, F. Family and T. Vicsek (1991), J. Phys. A 24, L25.

    Google Scholar 

  36. Narayan, O. and D.S. Fisher, submitted to Phys. Rev. Lett.; O. Narayan, Ph.D. thesis, Princeton Univ. (1992).

    Google Scholar 

  37. For background information on Type II superconductors, see e.g. Tinkham, M. (1975) Introduction to Superconductivity, Krieger Publishers, Florida.

    Google Scholar 

  38. Fisher, D.S., M.P.A. Fisher and D.A. Huse (1991), Phys. Rev. B 43, 130, and references therein. For a pedagogical review, see Huse, D.A., M.P.A. Fisher and D.S. Fisher (1992), Nature 358, 553.

    Google Scholar 

  39. Narayan, O. and D.S. Fisher (1992), Phys. Rev. B 46, 11520, and references therein.

    Article  ADS  Google Scholar 

  40. Fisher, D.S. (1987), in A.R. Bishop et al. (ed.), Nonlinearity in Condensed Matter, Springer-Verlag, New York.

    Google Scholar 

  41. Martys, N., M.O. Robbins and M. Cieplak (1991), Phys. Rev. B 44, 12294, and references therein.

    Article  ADS  Google Scholar 

  42. Carlson, J.M. and J.S. Langer (1989), Phys. Rev. Lett. 62, 2632.

    Article  ADS  Google Scholar 

  43. Bak, P., C. Tang and K. Wiesenfeld (1980), Phys. Rev. A 38, 364; L. Kadanoff, S. Nagel, L. Wu and S. Zhou (1989), Phys. Rev. A 39, 6524.

    Google Scholar 

  44. Sethna, J.P., K. Dahmen, S. Kartha, J.A. Krumhansl, B.W. Roberts and J.D. Shore, preprint.

    Google Scholar 

  45. There are exceptions to this, for example random field Ising systems which have activated dynamic scaling near their critical temperatures. See reference [30] and Villain, J. (1985), J. Physique 46, 1843; Fisher, D.S. (1986), Phys. Rev. Lett. 56, 416.

    Google Scholar 

  46. Fisher, D.S. and D.A. Huse (1987), Phys. Rev. B 36, 8937.

    Article  ADS  Google Scholar 

  47. Kenning, G.G., J. Slaughter and J.A. Cowen (1987), Phys. Rev. Lett. 59, 2596.

    Article  ADS  Google Scholar 

  48. Sherrington, D. and S. Kirkpatrick (1975), Phys. Rev. Lett. 35, 1972.

    Article  Google Scholar 

  49. de Almeida, J.R.L. and D.J. Thouless (1978), J. Phys. A 11, 983.

    Article  ADS  Google Scholar 

  50. Ocio, M., H. Bouchiat and P. Monod (1985), J. Physique Lett. 246, L647.

    Article  Google Scholar 

  51. Resistance noise has recently been used as an indirect probe of the spin configurations in small samples of spin glasses; Alers, G.B., M.B. Weissman and N.E. Israeloff (1992), Phys. Rev. B 46, 507.

    Article  ADS  Google Scholar 

  52. Many experiments studying the approach to the spin glass transition in zero field have been performed, for example, Monod, P. and H. Bouchiat (1982), J. Physique Lett. 43, 145; H. Bouchiat and P. Monod (1983), J. Magn. Matter 30, 175, and references in [13].

    Google Scholar 

  53. For the Sherrington-Kirkpatrick model, power law decay of autocorrelations in the ordered phase have been obtained by Sompolinsky, H. and A. Zippelius (1982), Phys. Rev. B 25, 6860. Experiments [31] show much slower decay, consistent with the predictions of [12] and [16].

    Google Scholar 

  54. Nelson, D.R. (1988), Phys. Rev. Lett. 60, 1973; A. Houghton, R.A. Pelcovits and S. Sudbo (1989), Phys. Rev. B 40, 6763.

    Google Scholar 

  55. Anderson, P.W. and Y.B. Kim (1964), Rev. Mod. Phys. 36, 39.

    Article  ADS  Google Scholar 

  56. Larkin, A.I. and Yu. N. Ovchinikov (1979), J. Low Temp. Phys. 34, 409.

    Article  ADS  Google Scholar 

  57. Kim, J.V. and J.M. Kosterlitz (1989), Phys. Rev. Lett. 62, 2289.

    Article  ADS  Google Scholar 

  58. Feigel’man, M.V. and V.M. Vinokur (1990), Phys. Rev. B 41, 8986.

    Article  ADS  Google Scholar 

  59. Worthington, T.K., M.P.A. Fisher, D.A. Huse, J. Toner, A.D. Marwick, T. Zabel, C.A. Field and S. Holtzberg (1992), Phys. Rev. B 46, 11854.

    Article  ADS  Google Scholar 

  60. Fisher, M.P.A. (1989), Phys. Rev. Lett. 62, 1415.

    Article  ADS  Google Scholar 

  61. Moore, M.A. (1988), Phys. Rev. B 39, 136, has pointed out that fluctuations of the vortex lines actually destroy the order of ? in the Abrikosov lattice phase.

    Google Scholar 

  62. See, however, recent work of S. Bhattacharya and M.J. Higgins, preprint;

    Google Scholar 

  63. Sandvold, E. and C. Rossel (1992), Physica C 190, 309.

    Article  ADS  Google Scholar 

  64. Koch, R.H., V. Foglietti, W.J. Gallagher, G. Koren, A. Gupta and M.P.A. Fisher (1989), Phys. Rev. Lett. 63, 1511.

    Article  ADS  Google Scholar 

  65. Safar, H., P.L. Gammel, D.A. Huse, D.J. Bishop, J.P. Rice and D.M. Ginsberg (1992), Phys. Rev. Lett. 69, 824.

    Article  ADS  Google Scholar 

  66. Palstra, T.T.M., B. Batlugg, L.F. Schneemeyer and J.V. Wasczak (1988), Phys. Rev. Lett. 61, 1662; H. Safar, P.L. Gammel, D.J. Bishop, D.B. Mitzi and A. Kapitulnik (1992), Phys. Rev. Lett. 68, 2672.

    Google Scholar 

  67. Gammel, P.L., L.F. Schneemeyer and D.J. Bishop (1991), Phys. Rev. Lett. 66, 953.

    Article  ADS  Google Scholar 

  68. Fisher, D.S. (1991) in K. Bedell et al. (eds.), Phenomenology & Applications of High Temperature Superconductors, Addison-Wesley, New York.

    Google Scholar 

  69. Fleshier, S. W-K Kwok, U. Welp, V.M. Vinokur, M.K. Smith, J. Downey and G.W. Crabtree, preprint.

    Google Scholar 

  70. The effects of columnar defects have been considered by Nelson, D.R. and V.M. Vinokur (1992), Phys. Rev. Lett. 68, 2398.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fisher, D.S. (1993). Low Temperature Phases, Ordering and Dynamics in Random Media. In: Riste, T., Sherrington, D. (eds) Phase Transitions and Relaxation in Systems with Competing Energy Scales. NATO ASI Series, vol 415. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1908-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1908-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4843-9

  • Online ISBN: 978-94-011-1908-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics