Skip to main content
Log in

Pinning in type II superconductors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Large and randomly arranged pinning centers cause a strong deformation of a flux line lattice, so that each pinning center acts on the lattice with a maximum force. The average force for such single-particle pinning can be inferred from a simple summing procedure and has a domelike dependence on magnetic field. Pinning centers of average force, such as clusters of dislocations, strongly deform the flux line lattice only in weak fields and in fields close to the critical field, where there is a peak in the dependence of the critical current on magnetic field. In the range of intermediate fields there is a weak collective pinning. A large concentration of weak centers leads to collective pinning in all fields. In this case, near the critical field a critical current peak should be observed. To explain this peak and to define the boundaries between the regions of collective and single-particle pinning the possible break-off of the flux line lattice from the lines of magnetic force should be taken into consideration, which leads to extra softening of the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957).

    Google Scholar 

  2. P. W. Anderson, Phys. Rev. Lett. 9, 309 (1962).

    Google Scholar 

  3. M. A. R. Le Blanc and W. A. Little, in Proc. 7th Inter. Conf. on Low Temp. Phys. (University of Toronto Press, 1961), p. 362; T. G. Berlincourt, R. R. Hake, and D. H. Leslie, Phys. Rev. Lett. 6, 671 (1971).

  4. M. Steingart, A. G. Purz, and E. J. Kramer, J. Appl. Phys. 44, 5580 (1973).

    Google Scholar 

  5. S. Borka, I. I. Goncharov, D. Frichevski, and I. S. Khukhareva, Fiz. Nizkikh Temp. 3, 716 (1977).

    Google Scholar 

  6. L. Ya. Vinnikov, V. I. Grigor'ev and O. V. Zharikov, Zh. Eksp. Teor. Fiz. 71, 252 (1976).

    Google Scholar 

  7. A. I. Larkin, Zh. Eksp. Teor. Fiz. 58, 1466 (1970).

    Google Scholar 

  8. A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 65, 1704 (1973).

    Google Scholar 

  9. E. H. Brandt, J. Low Temp. Phys. 26, 709 (1977).

    Google Scholar 

  10. A. I. Larkin and Yu. N. Ovchinnikov, Pisma Zh. Eksp. Teor. Fiz. 27, 301 (1978).

    Google Scholar 

  11. R. Labusch, Cryst. Lattice Defects 1, 1 (1969).

    Google Scholar 

  12. G. Eilenberger, Z. Phys. 214, 195 (1968).

    Google Scholar 

  13. A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 55, 2262 (1968).

    Google Scholar 

  14. Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 66, 1100 (1974).

    Google Scholar 

  15. R. Schmucher and E. H. Brandt, Phys. Stat. Sol. (b) 79, 479 (1977).

    Google Scholar 

  16. A. M. Campbell and J. E. Evetts, Critical Currents in Superconductors (London, 1972).

  17. K. E. Osborne and E. J. Kramer, Phil. Mag. 29, 685 (1974).

    Google Scholar 

  18. A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 61, 1221 (1971).

    Google Scholar 

  19. S. Borka, I. N. Goncharov, D. Frichevski, and I. S. Khukhareva, Fiz. Nizkikh Temp. 3, 598 (1977).

    Google Scholar 

  20. E. J. Kramer, MSC Report-2857; J. Appl. Phys. 49, 742 (1978).

  21. A. A. Moshenskii, N. Ya. Fogel', A. S. Sidorenko, A. M. Gluchov, I. M. Dmitrienko, L. P. Tishchenko, and Ya. M. Fogel', Fiz. Nizkikh Temp. 2, 685 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larkin, A.I., Ovchinnikov, Y.N. Pinning in type II superconductors. J Low Temp Phys 34, 409–428 (1979). https://doi.org/10.1007/BF00117160

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00117160

Keywords

Navigation