Skip to main content

Part of the book series: Tasks for vegetation Science ((TAVS,volume 12))

Abstract

Ecological patterns in several aspects of leaf form and canopy structure in tropical forest plants are reviewed and analyzed in terms of their potential significance for competitive ability. Cost/ benefit models for traits that directly influence gas exchange — such as the size, inclination, and reflectivity of leaves and the profile and aerodynamic roughness of canopies — suggest a basis for the paradoxical duality of morphological adaptations to drought and nutrient poverty. Models based on the balance between photosynthesis and mechanical efficiency predict various patterns in leaf shape, and analyze the functional significance of orthotropy and plagiotropy, asymmetric leaf bases, anisophylly, alternate vs. opposite leaves, and simple vs. compound leaves. Brief comments are made on the potential importance of biotic interactions for trends in plant form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JAR (1961) The structure and development of the peat swamps of Sarawak and Brunei, J. Trop. Geog. 18, 7–16.

    Google Scholar 

  • Ashton, PS (1964) Ecological studies in the mixed dipterocarp forests of Brunei State, Oxford For. Mem. 25, 1–75.

    Google Scholar 

  • Ashton PS (1978) Crown characteristics of tropical trees. In Tomlinson PB and Zimmermann MH, eds. Tropical trees as living systems, Cambridge, Cambridge Univ. Press.

    Google Scholar 

  • Ashton PS and Brllnig EF (1975) The variation of tropical moist forest in relation to environmental factors and its relevance to land-use planning, Mitt. Bundesforschungan. Forst-Holzwirt. 109, 60–86.

    Google Scholar 

  • Barlow BA and Wiens D (1977) Host-parasite resemblance in Australian mistletoes: the case for cryptic mimicry, Evol. 31, 69–84.

    Article  Google Scholar 

  • Bazzaz FA and Pickett STA (1980) Physiological ecology of tropical succession: a comparative review, Ann. Rev. Ecol. Syst. 11, 287–310.

    Article  Google Scholar 

  • Beadle NCW (1962) Soil phosphate and the delimitation of plant communities in eastern Australia, Ecol. 35, 370–375.

    Article  Google Scholar 

  • Beadle NCW (1966) Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and scleromorphy, Ecol. 47, 992–1007.

    Article  Google Scholar 

  • Beard JS (1944) Climax vegetation in tropical America, Ecol. 25, 127–158.

    Article  Google Scholar 

  • Beard JS (1955) The classification of tropical American vegetation-types, Ecol. 36, 89–100.

    Article  Google Scholar 

  • Brown WH (1919) Vegetation of the Philippine mountains, Manila, Phil. Bur. Sci., Dept. Agr. & Nat. Res.

    Google Scholar 

  • Brunig EF (1970) Stand structure, physiognomy and environmental factors in some lowland forests in Sarawak, Trop. Ecol. 11, 26–43.

    Google Scholar 

  • Brunig EF (1971) On the ecological significance of drought in the equatorial wet evergreen (rain) forests of Sarawak (Borneo). In Flendley JR, ed. The water relations of Malesian forests, Hull, Univ. Hull Press.

    Google Scholar 

  • Brunig EF (1976) Tree form in relation to environmental conditions: an ecological viewpoint. In Cannel MGR and Last FT, eds. Tree physiology and yield improvement, London, Academic.

    Google Scholar 

  • Brunig EF (1983) Vegetation structure and growth. In Golley FB, ed. Tropical rain forest ecosystems: structure and function, Amsterdam, Elsevier.

    Google Scholar 

  • Buckley RC, Corlett RT and Grubb PJ (1980) Are the xeromorphic trees of tropical upper montane rain forests drought resistant?, Biotr. 12, 124–136.

    Article  Google Scholar 

  • Cain SA, de Oliviera Castro G, Pires JM and da Silva NT (1956) Application of some phytosociological techniques to Brazilian rain forest, Am. J. Bot. 43, 911–941.

    Article  Google Scholar 

  • Carlquist S (1970) Hawaii: a natural history, New York, Natural History Press.

    Google Scholar 

  • Chabot BF and Hicks DF (1982) The ecology of leaf life spans, Ann. Rev. Ecol. Syst. 13, 229–259.

    Article  Google Scholar 

  • Chippendale GM (1973) Eucalypts of the Western Australia goldfields (and the adjacent wheatbelt), Canberra, Austral. Govt. Publ.

    Google Scholar 

  • Cohen D (1970) The expected efficiency of water utilization in plants under different competitive and selective regimes, Isr. J. Bot. 19, 50–54.

    Google Scholar 

  • Coley PD (1983) Herbivory and defensive charac-teristics of tree species in a lowland tropical forest, Ecol. Monog. 53, 209–233.

    Article  Google Scholar 

  • Cowling RM and Campbell BM (1980) Convergence in vegetation structure in the Mediterranean communities of California, Chile, and South Africa, Vegetatio 43, 191–198.

    Article  Google Scholar 

  • Croat TB (1978) Flora of Barro Colorado Island, Stanford, Stanford Univ. Press.

    Google Scholar 

  • Cronquist A (1981) An integrated system of classification of flowering plants, New York, Columbia Univ. Press.

    Google Scholar 

  • Cuenca G (1976) Balance nutricional de algunas leñosas de dos ecosistemas contrastantes: bosque nublado y bosque deciduo. Thesis, Univ. Central de Venezuela, Caracas.

    Google Scholar 

  • Darwin C (1865) On the movements and habits of climbing plants, London, Longman and Green.

    Google Scholar 

  • Daubenmire R (1972) Phenology and other charac-teristics of tropical semi-deciduous forest in northwestern Costa Rica, J. Ecol. 60, 147–170.

    Article  Google Scholar 

  • David TAW and Richards PW (1933) The vegetation of Moraballi Creek, British Guiana: an ecological study of a limited area of tropical rain forest, I. J. Ecol. 21, 350–384.

    Article  Google Scholar 

  • David TAW and Richards PW (1934) The vegetation of Moraballi Creek, British Guiana: an ecological study of a limited area of tropical rain forest, II. J. Ecol. 22, 106–155.

    Article  Google Scholar 

  • Dean JM and Smith AP (1979) Behavioral and morphological adaptations of a tropical plant to high rainfall, Biotr. 10, 152–154.

    Article  Google Scholar 

  • De Oliviera JGB and Labouriau LG (1961) Transpiracao de algumas plantas de caatinga aclimatas do Jardim Botánico do Rio de Janeiro. I. Comportamento de Caesalpinia pyramidalis Tull., de Zizyphus joazeiro Mart., de Jatropha phyllacantha Muell. Arg. e de Spondias mombin Arruda, An. Acad. Bras. Cienc. 33, 351–373.

    Google Scholar 

  • Dolph GE and Dilcher DL (1980a) Variation in leaf size with respect to climate in Costa Rica, Biotr. 12, 91–99.

    Article  Google Scholar 

  • Dolph GE and Dlicher DL (1980b) Variation in leaf size with respect to climate in the tropics of the western hemisphere, Bull. Torr. Bot. Club 107, 154–162.

    Article  Google Scholar 

  • Eggeling WJ (1955) The relationship between crown form and sex in Chlorophora excelsa, Emp. For. Rev. 34, 294.

    Google Scholar 

  • Ehleringer J and Forseth I (1980) Solar tracking by plants, Science 210, 1094–1098.

    Article  PubMed  CAS  Google Scholar 

  • Ehleringer JR and Mooney HA (1978) Leaf hairs: effects on physiological activity and adaptive value to a desert shrub, Oecol. 37, 183–200.

    Article  Google Scholar 

  • Ehleringer JR, Mooney HA, Gulmon SL and Rundel PW (1981) Parallel evolution of leaf pubescence in Encelia in coastal deserts of North and South America, Oecol. 49, 38–41.

    Article  Google Scholar 

  • Eisenberg JF (1980) The density and biomass of tropical mammals. In Soulé ME and Wilcox BA, eds. Conservation biology, Sunderland, Sinauer.

    Google Scholar 

  • Faegri K and van der Pijl L (1966) Principles of pollination biology, Oxford, Pergamon.

    Google Scholar 

  • Faegri K and van der Pijl L (1969) Principles of dispersal in higher plants, New York, Springer.

    Google Scholar 

  • Ferri MG (1961) Problems of water relations of some Brazilian vegetation types, with special consideration of the concepts of xeromorphy and xerophytism. In Plant-water relationships in arid and semi-arid conditions, New York, UNESCO.

    Google Scholar 

  • Field C (1981) Leaf age effects on the carbon gain of individual leaves in relation to microsite. In Margaris NS and Mooney HA, eds. Components of productivity of Mediterranean-climate regions: basic and applied aspects, The Hague, Dr. Junk.

    Google Scholar 

  • Forseth I and Ehleringer JR (1979) Solar tracking response to drought in a desert annual, Oecol. 44, 159–164.

    Article  Google Scholar 

  • Fox JED (1972) The natural vegetation of Sabah and natural regeneration of the dipterocarp forests. Ph.D. thesis, University of Wales, Cardiff.

    Google Scholar 

  • Frankie GW, Baker HG and Opler PA (1974) Compa-rative phenological studies of trees in tropical lowland wet and dry forest sites of Costa Rica, J. Ecol. 62, 881–919.

    Article  Google Scholar 

  • Gates DM (1962) Energy exchange in the biosphere, New York, Harper & Row.

    Google Scholar 

  • Gates DM (1965) Energy, plants and ecology, Ecol. 46, 1–13.

    Article  Google Scholar 

  • Gates DM (1980) Biophysical ecology, New York, Springer.

    Google Scholar 

  • Gates DM and Benedict CM (1963) Convection phenomena from plants in still air, Am. J. Bot. 50, 563–573.

    Article  Google Scholar 

  • Gates DM and Papian LE (1971) An atlas of leaf energy budgets, New York, Academic.

    Google Scholar 

  • Geller GN and Smith WK (1980) Leaf and environmental parameters influencing transpiration: theory and field measurements, Oecol. 46, 308–313.

    Google Scholar 

  • Gentry AH (1969) A comparison of some leaf characteristics of tropical dry forest and tropical wet forest in Costa Rica, Turrialba 19, 419–428.

    Google Scholar 

  • Gilbert LE (1975) Ecological consequences of a coevolved mutualism between butterflies and plants. In Gilbert LE and Raven PH, eds. Coevolution of animals and plants, Austin, Univ. Texas Press.

    Google Scholar 

  • Gilbert LE (1980) Food web organization and the conservation of neotropical diversity. In Soule ME and Wilcox BA, eds. Conservation biology, Sunderland, Sinauer.

    Google Scholar 

  • Givnish TJ (1976) Leaf form in relation to environment. Ph.D. thesis, Princeton University, Princeton.

    Google Scholar 

  • Givnish TJ (1978a) Ecological aspects of plant morphology: leaf form in relation to environment, Acta Biotheor. 27 (7), 83–142.

    Google Scholar 

  • Givnish TJ (1978b) On the adaptive significance of compound leaves, with particular reference to tropical trees. In Tomlinson PB and Zimmermann MH, eds. Tropical trees as living systems, New York, Cambridge Univ. Press.

    Google Scholar 

  • Givnish TJ (1979) On the adaptive significance of leaf form. In Solbrig OT, Jain S, Johnson GB and Raven PH, eds. Topics in plant population biology, New York, Columbia Univ. Press.

    Google Scholar 

  • Givnish TJ (1982) On the adaptive significance of leaf height in forest herbs, Am. Nat. 120, 353–381.

    Article  Google Scholar 

  • Givnish TJ and Vermeij GJ (1976) Sizes and shapes of liane leaves, Am. Nat. 100, 743–778.

    Article  Google Scholar 

  • Greacen EL, Ponsana P and Barley KP (1976) Resistance to water flow in the roots of cereals. In Lange OL, Kappen L and Schulze E.-D., eds. Water and plant life: problems and modern approaches, New York, Springer.

    Google Scholar 

  • Grubb PJ (1974) Factors controlling the distribution of forest types on tropical mountains — new facts and a new perspective. In Flenley JR, ed. Altitudinal zonation of forests in Malesia, Hull, Univ. Hull Press.

    Google Scholar 

  • Grubb PJ (1977) Control of forest growth and distribution on wet tropical mountains, Ann. Rev. Ecol. Syst. 8, 83–107.

    Article  CAS  Google Scholar 

  • Grubb PJ, Lloyd JR, Pennington TD and Whitmore TC (1963) A comparison of montane and lowland rain forest in Ecuador. I. Forest structure, physiognomy, and floristics, J. Ecol. 51, 567–602.

    Article  Google Scholar 

  • Gulmon SL and Chu CC (1981) The effect of light and nitrogen on photosynthesis, leaf characteristics, and dry matter allocation in the chaparral shrub, Diplacus auranticus, Oecol. 49, 207–212.

    Article  Google Scholar 

  • Hall JB and Swaine MD (1981) Distribution and ecology of vascular plants in a tropical rain forest, The Hague, Dr. Junk.

    Google Scholar 

  • Hallé F and Oldeman RAA (1970) Essai sur l’architecture et la dynamique de croissance des arbres tropicaux, Paris, Masson.

    Google Scholar 

  • Hallé F, Oldeman RAA and Tomlinson PB (1978) Tropical trees and forests, New York, Cambridge Univ. Press.

    Google Scholar 

  • Henwood K (1973) A structural model of forces in buttressed tropical rain forest trees. Biotr. 5, 83–93.

    Article  Google Scholar 

  • Holttum RE (1953) Evolutionary trends in an equatorial climate, Symp. Soc. Exp. Biol. 7, 154–173.

    Google Scholar 

  • Hartshorn, GS (1978) Tree falls and tropical forest dynamics. In Tomlinson PB and Zimmerman MH, eds. Tropical trees as living systems, New York, Cambridge Univ. Press.

    Google Scholar 

  • Hedberg O (1951) Vegetation belts of the East African mountains, Sv. Bot. Tidsk. 44, 140–202.

    Google Scholar 

  • Heywood VH (1978) Flowering plants of the world, New York, Mayflower Books.

    Google Scholar 

  • Horn HS (1971) The adaptive geometry of trees, Princeton, Princeton Univ. Press.

    Google Scholar 

  • Horn HS (1975.) Forest succession, Sei. Amer. 232 (5), 90–98.

    Google Scholar 

  • Howard RA (1969) The ecology of an elfin forest in Puerto Rico. 8. Studies of stem growth and form and of leaf structure, J. Arnold Arbor. 50, 225–267

    Google Scholar 

  • Howland HC (1962) Structural, hydraulic, and “economic” aspects of leaf venation and shape. In Bernard EE and Kare MR, eds. Biological prototypes and synthetic systems, Ithaca, Cornell Univ. Press.

    Google Scholar 

  • Janzen DH (1970) Jacquinia pungens, a heliophile from the understory of tropical deciduous forest, Biotr. 2, 112–119.

    Article  Google Scholar 

  • Janzen DH (1975) Ecology of plants in the tropics. London, Edward Arnold.

    Google Scholar 

  • Janzen DH (1983) Food webs: who eats what, why, how and with what effects in a tropical forest? In Golley FB, ed. Tropical rain forest ecosystems: structure and function, New York, Springer.

    Google Scholar 

  • Janzen DH and Martin PS (1982) Neotropical anachronisms: the fruits the gomphotheres ate. Science 214, 19–27.

    Article  Google Scholar 

  • King D (1981) Tree dimensions: maximizing the rate of height growth in dense stands, Oecol. 51, 351–356.

    Article  Google Scholar 

  • Koriba K (1958) On the periodicity of tree growth in the tropics with reference to the mode of branching, the leaf fall and the formation of the resting bud, Gard. Bull. 17, 11–81.

    Google Scholar 

  • Kuchler AW (1964) Potential natural vegetation of the coterminus United States, New York, Amer. Geogr. Soc. Publ. 146.

    Google Scholar 

  • Lee DW and Lowry JB (1975) Physical basis and ecological significance of iridescence in blue plants, Nature 254, 50–51.

    Article  Google Scholar 

  • Lee DW, Lowry JB and Stone BC (1979) Abaxial anthocyanin layer in leaves of tropical rain forest plants: enhancement of light capture in deep shade, Biotr. 11, 70–79.

    Article  Google Scholar 

  • Leigh EG (1972) The golden section and spiral leaf arrangement. In Deevey ES, ed. Growth by intussusception, Hamden CO, Archon.

    Google Scholar 

  • Leigh EG (1975) Structure and climate in tropical rain forests, Ann. Rev. Ecol. Syst. 6, 67–86.

    Article  Google Scholar 

  • Maximov NA (1929) The plant in relation to water, London, George Allen & Unwin.

    Google Scholar 

  • Maximov NA (1931) The physiological significance of the xeromorphic structure of plants, J. Ecol. 19, 272–282.

    Google Scholar 

  • McMahon TA (1973) Size and shape in biology, Science 179, 1201–1204.

    Article  PubMed  CAS  Google Scholar 

  • Medina E (1970.) Relationships between nitrogen level, photosynthetic capacity, and carboxydismutase activity in Atriplex patula leaves, Carn. Inst. Yrbk. 69, 655–662.

    Google Scholar 

  • Medina E (1971) Effect of nitrogen supply and light intensity during growth on the photosynthetic capacity and carboxydismutase activity of Atriplex patula ssp. hastata, Carn. Inst. Yrbk. 70, 551–559.

    Google Scholar 

  • Medina E (1983) Adaptations of tropical trees to moisture stress. In Golley FB, ed. Tropical rain forest ecosystems: structure and function, New York, Springer.

    Google Scholar 

  • Medina E, Sobrado M and Herrara R (19 78) Significance of leaf orientation for leaf temperature in an Amazonian sclerophyll vegetation, Radiat. Environ. Biophys. 15, 131–140.

    Google Scholar 

  • Miller PC (1979) Quantitative plant ecology. In Horn D, ed. Analysis of ecological systems, Columbus, Ohio State Univ. Press.

    Google Scholar 

  • Miller PC and Stoner WH (1979) Canopy structure and environmental interactions. In Solbrig OT, Jain S, Johnson GB and Raven PH, eds. Topics in plant population biology, New York, Columbia Univ. Press.

    Google Scholar 

  • Monk CD (1966) An ecological significance of evergreenness, Ecol. 47, 504–509.

    Article  Google Scholar 

  • Monsi M (1968) Mathematical models of plant communities. In Eckhardt F, ed. Functioning of terrestrial ecosystems at the primary productivity level, Paris, UNESCO.

    Google Scholar 

  • Montes R and Medina E (1977) Seasonal changes in nutrient content of leaves of savanna trees with different ecological behavior, Geo-Eco-Trop 1, 295–307.

    CAS  Google Scholar 

  • Montgomery GG, ed. (1978) The ecology of arboreal folivores, Washington D.C., Smithsonian Inst.

    Google Scholar 

  • Mooney HA and Ehleringer JR (1978) The carbon gain benefits of solar tracking in a desert annual, Plant Cell Environ. 1, 307–312.

    Article  Google Scholar 

  • Mooney HA and Gulmon SL (1979) Environmental and evolutionary constraints on the photosynthetic characteristics of higher plants. In Solbrig OT, Jain S, Johnson GB and Raven PH, eds. Topics in plant population biology, New York, Columbia Univ. Press.

    Google Scholar 

  • Mooney HA, Ferrar PJ and Slatyer RO (1977) Photosynthetic capacity and carbon allocation patterns in diverse growth forms of Eucalyptus, Oecol. 36, 103–111.

    Article  Google Scholar 

  • Moore HE, Jr. (1973) The major groups of palms and their distribution, Gentes Herb. 11, 27–141.

    Google Scholar 

  • Morley B (1973) Ecological factors of importance to Columnea taxonomy. In Heywood VH, ed. Taxonomy and ecology, New York, Academic.

    Google Scholar 

  • Morley BC (1974) Notes on some critical charac-ters in Colvmnea classification, Ann. Mo. Bot. Gard. 61, 514–525.

    Article  Google Scholar 

  • Nolde IV (1941) Zur Enstehung von Flachkronen bei tropisch-afrikanischen Bäumen, Kolonialforstl. Mitt. 3, 486–498.

    Google Scholar 

  • Orians GH and Solbrig OT (1977) A cost-income model of leaves and roots with special reference to arid and semi-arid areas, Am. Nat. 111, 677–690.

    Article  Google Scholar 

  • Osmaston HA (1965) Pollen and seed dispersal in Chlorophora and Parkia, Commonw. Forest. Rev. 44, 9 7–105.

    Google Scholar 

  • Parkhurst DF and Loucks OL (1972) Optimal leaf size in relation to environment, J. Ecol. 60, 505–537.

    Article  Google Scholar 

  • Peace WJH and MacDonald QD (1981) An investigation of the leaf anatomy, foliar mineral levels, and water relations of trees of a Sarawak forest, Biotr. 13, 100–119.

    Article  Google Scholar 

  • Putz FE (1980) Lianas vs. trees, Biotr. 12, 224–225.

    Article  Google Scholar 

  • Raunkiaer C (1934) The life forms of plants and statistical plant geography, London, Clarendon.

    Google Scholar 

  • Rausher MD (1978) Search image for leaf shape in a butterfly, Science 200, 1071–1073.

    Article  PubMed  CAS  Google Scholar 

  • Rausher MD (1980) Host abundance, juvenile survival, and oviposition preference in Battus philenov, Evol. 34, 343–355.

    Article  Google Scholar 

  • Raven JA (1976) The quantitative role of “dark” respiratory processes in heterotrophic and photo- lithotropic plant growth, Ann. Bot. 40, 537–562.

    Google Scholar 

  • Richards PW (1952) The tropical rain forest: an ecological study, Cambridge, Cambridge Univ. Press.

    Google Scholar 

  • Robberecht R, Caldwell MM and Billings WD (1980) Leaf ultraviolet optical properties along a latitudinal gradient in the arctic-alpine zone, Ecol. 61, 612–619.

    Article  Google Scholar 

  • Rollet B (1974) L’architecture des forets denses humides sempervirentes de plaine, Nogent sur Marne, Centre Tech. Forest. Tropical.

    Google Scholar 

  • Sarmiento G (1972) Ecological and floristic convergence between seasonal plant formations of tropical and subtropical South America, J. Ecol. 60, 367–410.

    Article  Google Scholar 

  • Sarmiento G (1983) Ecology of neotropical savan-nas, Cambridge, Harvard Univ. Press.

    Google Scholar 

  • Schenck H (1892) Beiträge zur Biologie und Ana-tomie der Lianen. I. Beiträge zur Biologie der Lianen, Bot. Mitt. Trop. 4, 1–248.

    Google Scholar 

  • Schimper AFW (1898) Pflanzengoographie auf physiologischer Grundlage, Jena, Fischer.

    Google Scholar 

  • Schulze E-D (1982) Plant life forms and their carbon, water, and nutrient relations. In Lange OL, Nobel PS, Osmond CB and Ziegler H, eds. Encyclopedia of plant physiology (new series), Vol. 12B, New York, Springer.

    Google Scholar 

  • Shields LM (1950) Leaf xeromorphy as related to physiological and structural influences, Bot. Rev. 16, 399–47.

    Article  Google Scholar 

  • Skog LE (1976) A study of the tribe Gesnerieae, with a revision of Gesneria (Gesneriaceae:Gesnerieae), Smithson. Contr. Bot. 29, 1–182.

    Article  Google Scholar 

  • Slatyer RO (1978) Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb, ex Spreng. VII. Relationship between gradients of field temperature and photosynthetic temperature optima in the Snowy Mountains area, Austral. J. Bot. 26, 111–121.

    Google Scholar 

  • Small E (1972a) Water relations of plants in raised Sphagnum peat bogs, Ecol. 53, 726–728.

    Article  Google Scholar 

  • Small E (1972b) Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants, Can. J. Bot. 50, 2227–2233.

    Article  CAS  Google Scholar 

  • Sobrado MA and Medina E (1980) General morphology, anatomical structure, and nutrient content of sclerophyllous leaves of the “bana” vegetation of Amazonia, Oecol. 45, 371–378.

    Article  Google Scholar 

  • Stowe LG and Brown JL (1981) A geographic per-spective on the ecology of compound leaves, Evol. 35, 818–821.

    Article  Google Scholar 

  • Sugden AM (1982) The vegetation of the Serrania de Macuira, Guajira Colombia: a contrast of arid lowlands and an isolated cloud forest, J. Arnold Arb. 63, 1–30.

    Google Scholar 

  • Tanner EVJ and Kapos V (1982) Leaf structure of Jamaican upper montane rain forest trees, Biotr. 14, 16–24.

    Article  Google Scholar 

  • Taylor SE (1971) Ecological implications of leaf morphology considered from the standpoint of energy relations and productivity. Ph.D. thesis, Washington Univ., St. Louis.

    Google Scholar 

  • Taylor SE (1975) Optimal leaf form. In Gates DM and Schmerl RB, eds. Perspectives in biophysical ecology, New York, Springer.

    Google Scholar 

  • Taylor SE and Sexton OJ (1972) Some implications of leaf tearing in Musaceae, Ecol. 53, 143–149.

    Article  Google Scholar 

  • Thoday D (1931) The significance of reduction in the size of leaves, J. Ecol. 14, 297–303.

    Google Scholar 

  • Tomlinson PB (1961) Anatomy of the monocotyledons, Vol. II: Palmae, Oxford, Clarendon.

    Google Scholar 

  • Veen BW (1977) The uptake of potassium, nitrate, water and oxygen by a maize root system in relation to its size, J. Exp. Bot. 28, 1389–1398.

    Article  CAS  Google Scholar 

  • Veen BW (1981) Relation between root respiration and root activity. In Brouwer R, Gasparikova O, Kolek J and Loughman BC, eds. Structure and function of plant roots, The Hague, Dr. Junk.

    Google Scholar 

  • Verdoorn F, ed. (1938) Manual of pteridology, The Hague, Martinus Nijhoff.

    Google Scholar 

  • Volkens G (1887) Die flora des ägyptischarabischen Wüste auf Grundlage anatomisch-physiologischen Forschungen, Berlin.

    Google Scholar 

  • Walter H (1973) Vegetation of the earth, New York, Springer.

    Google Scholar 

  • Waring RH, Emmingham WH, Gholz HL and Grier CC (1978) Variation in maximum leaf area of coniferous forests in Oregon and its ecological significance, Forest Sei. 24, 131–140.

    Google Scholar 

  • Webb LJ (1968) Environmental relationships of the structural types of Australian rain forest vegeation, Ecol. 49, 296–311.

    Article  Google Scholar 

  • Whitmore TC (1975) Tropical rain forests of the Far East, Oxford, Clarendon.

    Google Scholar 

  • Wiens D (1979) Mimicry in plants. In Hecht MK, Steeres WC and Wallace B, ed. Evolutionary Biology, Volume 11, New York, Plenum.

    Google Scholar 

  • Williamson GB (1981) Drip tips and splash erosion, Biotr. 13, 228–231.

    Article  Google Scholar 

  • Woodson RE (1947) Some dynamics of leaf variation in Asclepias tuberosa, Ann. Mo. Bot. Gard. 34, 353–432.

    Article  Google Scholar 

  • Wurdack JJ (1980) Flora of Ecuador, Stockholm, Swed. Natl. Res. Council.

    Google Scholar 

  • Wyatt R and Antonovics J (1981) Butterflyweed re-revisited: spatial and temporal patterns of leaf shape variation in Asclepias tuberosa, Evol. 35, 529–542.

    Article  Google Scholar 

  • Zimmermann MH (1978) Structural requirements for optimal water conduction in tree stems. In Tomlinson PB and Zimmerman MH, eds. Tropical trees as living systems, New York, Cambridge Univ. Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Medina H. A. Mooney C. Vázquez-Yánes

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Dr W. Junk Publishers, The Hague

About this chapter

Cite this chapter

Givnish, T.J. (1984). Leaf and Canopy Adaptations in Tropical Forests. In: Medina, E., Mooney, H.A., Vázquez-Yánes, C. (eds) Physiological ecology of plants of the wet tropics. Tasks for vegetation Science, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7299-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7299-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7301-5

  • Online ISBN: 978-94-009-7299-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics