Skip to main content

Seaweeds and biotechnology — inseparable companions

  • Conference paper
Thirteenth International Seaweed Symposium

Part of the book series: Developments in Hydrobiology ((DIHY,volume 58))

Abstract

I may be going out on the proverbial limb by saying that most of the major advances in modern biotechnology would not have been possible without the availability of the polysaccharides from marine macroalgae, or seaweeds, but from my admittedly biased vantage point, this is a reality. A number of you who are participants in this XIIIth International Seaweed Symposium have made significant contributions, both directly and indirectly, to this effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cheney, D. P., 1984. Genetic modification in seaweeds: application to commercial utilization. In R. R. Colwell, E. R. Pariser & A. J. Sinskey (eds), Biotechnology in the Marine Sciences. John Wiley & Sons, Inc., USA: 161–175.

    Google Scholar 

  • Craig, R. & B. Y. Reichelt, 1986. Genetic engineering in algal biotechnology. TIBTECH 11: 280–285.

    Google Scholar 

  • Duckworth, M. & W. Yaphe, 1971. The structure of agar. Part I. Fractionation of a complex mixture of polysaccharides. Carbohyd. Res. 16: 189–197.

    Article  CAS  Google Scholar 

  • FMC BioProducts, 1988. The Agarose Monograph. In FMC BioProducts Source Book. FMC Corportation, Rockland, Maine, 106 pp.

    Google Scholar 

  • Goff, L. J. & A. W. Coleman, 1988. The use of plastid restriction endonuclease patterns in delineating red algal species and populations. J. Phycol. 24: 357–368.

    Google Scholar 

  • Guiseley, K. B., 1976. Modified agarose and agar and method of making same. U.S. Patent 3, 956, 273.

    Google Scholar 

  • Guiseley, K. B., 1987. Natural and synthetic derivatives of agarose and their use in biochemical separations. In M. Yalpani (ed.), Industrial Polysaccharides: Genetic Engineering, Structure/Property Relations and Applications. Elsevier Science Publications B.V., Amsterdam: 139–147.

    Google Scholar 

  • Guiseley, K. B., 1989. Chemical and physical properties of algal polysaccharides used for cell immobilization. Enzyme Microb. Technol. 11: 706–716.

    Article  CAS  Google Scholar 

  • Gusev, M. V., A. H. Tambiev, N.N. Kirikova, N.N. Shelyastina & R. R. Aslanyan, 1987. Callus formation in seven species of agarophyte marine algae. Mar. Biol. 95: 593–597.

    Article  Google Scholar 

  • Howell, S. L., S. Ishaq & M. Tyhurst, 1982. Possible use of agarose gels as encapsulating media for transplantation of Islets of Langerhans. J. Physiol. 324: 20P.

    Google Scholar 

  • Lim, B.-L., H. Hori & S. Osawa, 1983. The nucleotide sequences of 5 S rRNAs from a multicellular green alga, Ulva pertusa ,and two brown algae, Eisenia bicyclis and Sargassum fulvellum. Nucl. Acids Res. 11: 1909–1912.

    Article  PubMed  CAS  Google Scholar 

  • Lorz, H., P. J. Larkin, J. Thompson & W. R. Scowcroft, 1983. Improved protoplast culture and agarose media. Plant Cell, Tissue, Organ Culture 2: 217–226.

    Article  Google Scholar 

  • Polne-Fuller, M. & A. Gibor, 1986. Calluses, cells, and proto-plasts in studies towards genetic improvement of seaweeds. Aquaculture 57: 117–123.

    Article  Google Scholar 

  • Shillito, R. D., J. Paszkowski & I. Potrykus, 1983. Agarose plating and bead type culture technique enable and stimulate development of protoplast-derived colonies in a number of plant species. Plant Cell Rep. 2: 244–247.

    Article  CAS  Google Scholar 

  • Stadler, T., J. Mollion, M.-C. Verdus, Y. Karamanos, H. Morvan & D. Christiaen (eds), 1988. Algal Biotechnology. Elsevier Applied Science, London, 521 pp.

    Google Scholar 

  • Stancioff, D. J. & D. W. Renn, 1975. Physiological effects of carrageenan. In A. Jeanes & J. Hodge (eds), ACS Symposium Series, Number 15. American Chemical Society, Washington, D.C.: 282–295.

    Google Scholar 

  • Tiboni, O., A. M. Sanangelantoni & O. Ciferri, 1987. A first list of Cyanobacterial genes sequenced or expressed. PL Mol. Biol. Rep. 5: 371–379.

    Article  CAS  Google Scholar 

  • Wieme, R. J., 1965. Agar Gel Electrophoresis. Elsevier, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this paper

Cite this paper

Renn, D.W. (1990). Seaweeds and biotechnology — inseparable companions. In: Lindstrom, S.C., Gabrielson, P.W. (eds) Thirteenth International Seaweed Symposium. Developments in Hydrobiology, vol 58. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2049-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2049-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7419-3

  • Online ISBN: 978-94-009-2049-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics