Skip to main content

Isolation and characterization of the N2-fixing symbiotic cyanobacterium Anabaena azollae

  • Chapter
Nitrogen Fixation with Non-Legumes

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 35))

Abstract

Expression of nitrogenase activity (C2H2 reduction) has been studied in the symbiotic N2-fixing cyanobacterium Anabaena azollae within the intact Azolla plant and after its isolation from the host. The cyanobacterium (blue-green alga) has been isolated successfully from the host plant by standard microbiological techniques. Optimum growth occurred in semi-solid (0.1% agar) Allen and Anion’s medium devoid of combined nitrogen. The alga has a generation time of 8–12 h when grown on atmospheric nitrogen. Addition of NO3 - or NH4 + did not change the growth rate. Actively N2-fixing filaments have a 15–18% heterocyst frequency. Under aerobic conditions, laboratory-grown A. azollae showed nitrogenase activity of 80–120 n mol C2H4 µgChla -1 h-1. The activity was linear for 2h in the light. The presence of high nitrogenase activity correlates with the observed high heterocyst frequency. Fresh intact Azolla plants showed a C2H2-reduction rate of 1.8–2 µmol C2H4g (fresh wt)-1h-1 and the activity was almost equal in light and dark, but, after 2 h dark incubation, the activity began to decline. The repression of nitrogenase activity by combined nitrogen sources viz., NO3 - or NH4 + was more pronounced in isolated A. azollae than in the whole Azolla plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen M B and Arnon D I 1955 Studies on nitrogen-fixing bue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica. Plant Physiol. 30, 366–372.

    Article  PubMed  CAS  Google Scholar 

  • Gates J E, Fisher R W, Goggin T W and Azrolan N I 1980 Antigenic differences between Anabaena azollae fresh from the Azolla fern leaf cavity and free-living cyanobacteria. Arch. Microbiol. 128, 126–129.

    Article  Google Scholar 

  • Gotto J W, Tabita F R and Van Baalen C 1979 Isolation and characterization of rapidly-growing marine, nitrogen-fixing strains of blue-green algae. Arch. Microbiol. 121, 155–159.

    Article  CAS  Google Scholar 

  • Hill D J 1975 The pattern of development of Anabaena in the Azolla-Anabaena symbiosis. Planta 122, 178–184.

    Article  Google Scholar 

  • Hill D J 1977 The role of Anabaena in the Azolla—Anabaena symbiosis. New Phytol. 78, 611–616.

    Article  Google Scholar 

  • Kobiler D, Cohen-Sharon A and Tel-or E 1981 Recognition between the N2-fixing Anabaena and the water fern Azolla. FEBS Lett. 133, 157–160.

    Article  CAS  Google Scholar 

  • Lis H and Sharon N 1972 Soy bean (Glycine max) agglutinin. Methods Enzymol. 28, 360–368.

    Article  Google Scholar 

  • Mackinney G 1941 Absorption of light by chlorophyll solutions. J. Biol. Chem. 140, 315–322.

    CAS  Google Scholar 

  • Meeks J C, Steinberg N, Joseph C M, Enderlin C S, Jorgensen P A and Peters G A 1985 Assimilation of exogenous and dinitrogen-derived 13NH4 + by Anabaena azollae separated from Azolla caroliniana Willd. Arch. Microbiol. 142, 229–233.

    Article  CAS  Google Scholar 

  • Newton J W and Herman A I 1979 Isolation of cyanobacteria from the aquatic fern, Azolla. Arch. Microbiol. 120, 161–165.

    Article  Google Scholar 

  • Peters G A 1975 The Azolla-Anabaena azollae relationship. III. Studies on metabolic capabilities and further characterization of the symbiont. Arch. Microbiol. 103, 113–122.

    Article  CAS  Google Scholar 

  • Peters G A and Mayne B C 1974 The Azolla — Anabaena azollae relationship. I. Initial characterization of the association. Plant Physiol. 53, 813–819.

    Article  PubMed  CAS  Google Scholar 

  • Peters G A, Toia R E Jr and Lough S M 1977 The Azolla-Anabaena azollae relationship. V. 15N2 fixation, acetylene reduction and H2 production. Plant Physiol. 59, 1021–1025.

    Article  PubMed  CAS  Google Scholar 

  • Peters G A, Toia R E Jr, Raveed D and Levine N J 1978 TheAzolla-Anabaena azollae relationship. VI. Morphological aspects of the association. New Phytol. 80, 583–593.

    Article  Google Scholar 

  • Peters G A, Toia R E Jr, Evans W R, Crist D K, Mayne B C and Poole R E 1980 Characterization and comparisons of five N2-fixing Azolla-Anabaena associations. I. Optimization of growth conditions for biomass increase and N content in a controlled environment. Plant Cell Environ. 3, 261–269.

    Google Scholar 

  • Ray T B, Peters G A, Toia R E Jr and Mayne B C 1978 The Azolla-Anabaena azollae relationship. VII. Distribution of ammonia-assimilating enzymes, protein and chlorophyll between host and symbiont. Plant Physiol. 62, 463–467.

    Article  PubMed  CAS  Google Scholar 

  • Ray T B, Mayne B C, Toia R E Jr and Peters G A 1979 The Azolla-Anabaena azollae relationship. VIII. Photosynthetic characterization of the association and individual partners.Plant Physiol. 64, 791–795.

    Article  PubMed  CAS  Google Scholar 

  • Stewart W D P 1980 Some aspects of structure and function in N2-fixing cyanobacteria. Annu. Rev. Microbiol. 34, 497–536.

    Article  PubMed  CAS  Google Scholar 

  • Stewart W D P and Rodgers G A 1977 The cyanophyte-hepatic symbiosis. II. Nitrogen fixation and the interchange of nitrogen and carbon. New Phytol. 78, 459–471.

    Article  CAS  Google Scholar 

  • Stewart W D P, Fitzgerald G P and Burris R H 1967 In situ studies on N2 fixation using acetylene reduction technique.Proc. Natl. Acad. Sci., U.S.A. 58, 2071–2078.

    Article  PubMed  CAS  Google Scholar 

  • Stewart W D P, Rowell P and Rai A N 1980 Symbiotic nitrogenfixing cyanobacteria. In Nitrogen Fixation. Eds. W D P Stewart and J R Gallon, pp 239–277. Academic Press, New York, London.

    Google Scholar 

  • Stewart W D P, Rowell P and Rai AN 1983 Cyanobacteria-eukaryote plant symbiosis. Ann. Microbiol. (Inst. Pasteur) 134B, 205–228.

    CAS  Google Scholar 

  • Tyagi V V S, Mayne B C and Peters G A 1980 Purification and initial characterization of phycobiliproteins from the endophytic cyanobacterium of Azolla. Arch. Microbiol. 128, 41–44.

    Article  CAS  Google Scholar 

  • Zimmerman W J 1987 Growth, nitrogen fixation and mass culture of isolated Anabaena azollae. Biotech. Lett. 9, 31–36.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Srivastava, M., Sharma, A., Kumar, A. (1989). Isolation and characterization of the N2-fixing symbiotic cyanobacterium Anabaena azollae . In: Skinner, F.A., Boddey, R.M., Fendrik, I. (eds) Nitrogen Fixation with Non-Legumes. Developments in Plant and Soil Sciences, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0889-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0889-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6888-8

  • Online ISBN: 978-94-009-0889-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics