Skip to main content

Assessment of Brain Tumors, Cerebrovascular and Cerebral Degenerative Diseases with PET

  • Chapter
Clinical PET

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 28))

  • 162 Accesses

Abstract

The first clinical applications of positron emission tomography (PET) more than fifteen years ago were in neurology, mainly using the 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) technique derived from experimental autoradiographic work. Today, [18F]FDG is still the preferred tracer for most clinical neurological studies because of the close relation between local cerebral glucose metabolism (1CMRGlu) and the density of functionally active synapses, which is most informative in a large variety of generalized and local functional brain disorders. Technical advantages include: high resolution images (due to low positron energy of Fluorine-18), low noise levels at low doses (with typical data acquisition time of 20–40 min at 185–370 MBq injected dose), little patient cooperation required, absolute quantitation without arterial puncture, tracer batch production possible (due to relatively long half-life time).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Russell DS, Rubinstein LJ. Pathology of tumours of the nervous system. 5th ed. London: Edward Arnold, 1989.

    Google Scholar 

  2. Pardo FS, Aronen HJ, Kennedy D, et al. Functional cerebral imaging in the evaluation and radiotherapeutic treatment planning of patients with malignant glioma. Int J Radial Oncol Biol Phys 1994; 30: 663–669.

    CAS  Google Scholar 

  3. DiChiro G. Positron-emission-tomography using [F-18]-fluorodeoxyglucose in brain tumors-a powerful diagnostic and prognostic tool. Invest Radiol 1987; 22: 360–371.

    Article  CAS  Google Scholar 

  4. Alavi JB, Alavi A, Chawluk J, et al. Positron emission tomography in patients with glioma-a predictor of prognosis. Cancer 1988; 62: 1074–1078.

    Article  PubMed  CAS  Google Scholar 

  5. Schifter T, Hoffman JM, Hanson MW, et al. Serial FDG-PET studies in the prediction of survival in patients with primary brain-tumors. J Comput Assist Tomogr 1993; 17: 509–516.

    Article  PubMed  CAS  Google Scholar 

  6. Hölzer T, Herholz K, Jeske J, Heiss D. FDG-PET as a prognostic indicator in radiochemotherapy of glioblastoma. J Comput Assist Tomogr 1993; 17: 681–687.

    Article  PubMed  Google Scholar 

  7. Shapiro WR. Low-grade gliomas-when to treat. Ann Neurol 1992; 31: 437–438.

    Article  PubMed  CAS  Google Scholar 

  8. Herholz K, Pietrzyk U, Voges J, et al. Correlation of glucose consumption and tumor-cell density in astrocytomas-a stereotaxic PET study. J Neurosurg 1993; 79: 853–858.

    Article  PubMed  CAS  Google Scholar 

  9. Goldman S, Levivier M, Bouquey D, et al. Correlation of glucose-metabolism and histopathology of gliomas using PET-guided stereotaxic biopsy. Neurology 1993; 43: 249–249.

    Google Scholar 

  10. Holthoff VA, Herholz K, Berthold F, et al. In-vivo metabolism of childhood posterior-fossa tumors and primitive neuroectodermal tumors before and after treatment. Cancer 1993; 72: 1394–1403.

    Article  PubMed  CAS  Google Scholar 

  11. DiChiro G, Hatazawa J, Katz DA, Rizzoli HV, DeMichele DJ. Glucose utilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence: a PET study. Radiology 1987; 164: 521–6.

    CAS  Google Scholar 

  12. Cremerius U, Striepecke E, Henn W. et al. (18)FDG-PET in intracranial meningiomas versus grading, proliferation index, cellular density and cytogenetical analysis. Nuklearmedizin 1994; 33: 144–149.

    PubMed  CAS  Google Scholar 

  13. DeSouza B, Brunetti A, Fulham MJ, et al. Pituitary microadenomas-a PET study. Radiology 1990; 177: 39–44.

    CAS  Google Scholar 

  14. Fulham MJ, Melisi JW, Nishimiya J, Dwyer AJ, DiChiro G. Neuroimaging of juvenile pilocytic astrocytomas-an enigma. Radiology 1993; 189: 221–225.

    PubMed  CAS  Google Scholar 

  15. Doyle WK, Budinger TF, Valk PE, et al. Differentiation of cerebral radiation-necrosis from tumor recurrence by 18-FDG and Rb-82 PET. J Comput Assist Tomogr 1987; 11: 563–570.

    Article  PubMed  CAS  Google Scholar 

  16. Ogawa T, Kanno I, Shishido F, et al. Clinical-value of PET with F-18-fluorodeoxyglucose and 1-methyl-C-11-methionine for diagnosis of recurrent brain-tumor and radiation-injury. Acta Radiol 1991; 32: 197–202.

    Article  PubMed  CAS  Google Scholar 

  17. Davis WK, Boyko OB, Hoffman JM, et al. [F-18]-2-fluoro-2- deoxyglucose positron emission tomography correlation of gadolinium-enhanced mr-imaging of central-nervous-system neoplasia. Am J Neuroradiol 1993; 14: 515–523.

    PubMed  CAS  Google Scholar 

  18. Francavilla TL, Miletich RS, DiChiro G, Patronas NJ, Rizzoli HV, Wright DC. Positron emission tomography in the detection of malignant degeneration of low-grade-gliomas. Neurosurgery 1989; 24: 1–5.

    Article  PubMed  CAS  Google Scholar 

  19. Bergstrom M, Muhr C, Lundberg PO, Langstrom B. PET as a tool in the clinical-evaluation of pituitary adenomas. J Nucl Med 1991; 32: 610–615.

    PubMed  CAS  Google Scholar 

  20. Bustany P, Chatel M, Delon JM, Dared F, Sgouropoulos F, Syrota A. Brain-tumor protein-synthesis and histological-grades: a study by PET with C-11–1-methionine. J Neurooncol 1986; 3: 397–404.

    Article  PubMed  CAS  Google Scholar 

  21. Schober O, Duden C, Meyer GJ, Müller JA, Hundeshagen H. Non selective transport of C-11-methyl-l-methionine and d-methionine into malignant glioma. Eur J Nucl Med 1987; 13: 103–105.

    Article  PubMed  CAS  Google Scholar 

  22. Derlon JM, Bourdet C, Bustany P, et al. [C-11]-1-methionine uptake in gliomas. Neurosurgery 1989; 25: 720–728. [copy]

    Article  PubMed  CAS  Google Scholar 

  23. Wienhard K, Herholz K, Coenen HH, et al. Increased amino-acid-transport into brain-tumors measured by PET of 1-(2-F-18)fluorotyrosine. J Nucl Med 1991; 32: 1338–1346.

    PubMed  CAS  Google Scholar 

  24. Kameyama M, Shirane R, Itoh J, et al. The accumulation of C-11-methionine in cerebral glioma patients studied with PET. Acta Neurochir 1990; 104: 8–12.

    Article  CAS  Google Scholar 

  25. Mosskin M, Ericson K, Hindmarsh T, Vonholst H, et al. Positron emission tomography compared with magnetic-resonance imaging and computed-tomography in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiol 1989; 30: 225–232.

    Article  PubMed  CAS  Google Scholar 

  26. Ogawa T, Shishido F, Kanno I, et al. Cerebral glioma-evaluation with methionine. PET radiology 1993; 186: 45–53.

    CAS  Google Scholar 

  27. Go KG, Keuter EJW, Kamman RL, et al. Contribution of magnetic-resonance spectroscopic imaging and 1-[1-C-11]tyrosine positron emission tomography to localization of cerebral gliomas for biopsy. Neurosurgery 1994; 34: 994–1002.

    Article  PubMed  CAS  Google Scholar 

  28. Langen KJ, Coenen HH, Roosen N, et al. Spect studies of brain-tumors with 1–3-[I-123] iodo-alpha-methyl tyrosine-comparison with PET, 124imt and 1st clinical-results. J Nucl Med 1990; 31: 281–286.

    PubMed  CAS  Google Scholar 

  29. Pietrzyk U, Herholz K, Würker M, et al. Effect of interstitial irradiation on glucose metabolism and methionine uptake in glioma patients. J Nucl Med 1994; 35 (suppl): 235P.

    Google Scholar 

  30. Ogawa T, Kanno I, Hatazawa J, et al. Methionine PET for follow-up of radiation-therapy of primary lymphoma of the brain. Radiographics 1994; 14: 101–110.

    PubMed  CAS  Google Scholar 

  31. Rozental JM, Levine RL, Nickles RJ. Changes in glucose uptake by malignant gliomas-preliminary-study of prognostic -significance. J Neurooncol 1991; 10: 75–83.

    Article  PubMed  CAS  Google Scholar 

  32. Dewitte O, Hildebrand J, Luxen A, Goldman S. Acute effect of carmustine on glucose-metabolism in brain and glioblastoma. Cancer 1994; 74: 2836–2842.

    Article  CAS  Google Scholar 

  33. Heiss W.D., Herholz K. Assessment of pathophysiology of stroke by positron emission tomography. Eur J Nucl Med 1994; 21: 455–465.

    Article  PubMed  CAS  Google Scholar 

  34. Leblanc R, Yamamoto YL, Tyler JL, Hakim A. Hemodynamic and metabolic effects of extracranial carotid disease. Can J Neurol Sci 1989; 16: 51–57.

    PubMed  CAS  Google Scholar 

  35. Carpenter DA, Grubb RL, Powers WJ. Borderzone hemodynamics in cerebrovascular-disease. Neurology 1990; 40: 1587–1592.

    PubMed  CAS  Google Scholar 

  36. Baron JC, Bousser MG, Rey A, Guillard A, Comar D, Castaigne P. Reversal of focal misery-perfusion-syndrome by extra-intracranial-arterial-bypass in hemodynamic cerebral ischemia-a case study with 15–0 PET. Stroke 1981; 12: 454–459.

    Article  PubMed  CAS  Google Scholar 

  37. Samson Y, Baron JC. Pet studies in internal carotid occlusion patients: base-line hemodynamic and metabolic alterations: effects of surgical revascularization and induced arterial hypertension. In: Heiss WD, Pawlik G, Herholz K, Wienhard K, editors. Clinical Efficacy of Positron Emission Tomography, Dordrecht, Boston, Lancaster: M. Nijhoff Publ, 1987: 55.

    Google Scholar 

  38. Powers WJ, Grubb RL, Raichle ME. Clinical-results of extracranial-intracranial bypass-surgery in patients with hemodynamic cerebrovascular-disease. J Neurosurg 1989; 70: 61–67.

    Article  PubMed  CAS  Google Scholar 

  39. Herold S, Brown MM, Frackowiak RSJ, Mansfield AO, Thomas DJ, Marshall J. Assessment of cerebral hemodynamic reserve-correlation between PET parameters and CO2-reactivity measured by the intravenous Xe-133 injection technique. J Neurol Neurosurg Psychiatry 1988; 51: 1045–1050.

    Article  PubMed  CAS  Google Scholar 

  40. Hirano T, Minematsu K, Hasegawa Y, Tanaka Y, Hayashida K, Yamaguchi T. Acetazolamide reactivity on 1–123 imp single-photon emission computed-tomography in patients with major cerebral-artery occlusive disease-correlation with positron emission tomography parameters. J Cereb Blood Flow Metab 1994; 14: 763–770.

    Article  PubMed  CAS  Google Scholar 

  41. Heiss WD, Herholz K, Böcher-Schwarz HG, et al. PET, CT, and MR imaging in cerebrovascular disease. J Comput Assist Tomogr 1986; 10: 903–911.

    Article  PubMed  CAS  Google Scholar 

  42. Metter EJ. Neuroanatomy and physiology of aphasia: evidence from PET. Aphasiology 1987; 1: 3–33.

    Article  Google Scholar 

  43. Karbe H, Herholz K, Szelies B, Pawlik G, Wienhard K, Heiss WD. Regional metabolic correlates of token-test results in cortical and subcortical left hemispheric infarction. Neurology 1989; 39: 1083–1088.

    PubMed  CAS  Google Scholar 

  44. Heiss WD, Emunds HG, Herholz K. Cerebral glucose metabolism as a predictor of rehabilitation after ischemic stroke. Stroke 1993; 24: 1784–1788.

    Article  PubMed  CAS  Google Scholar 

  45. Heiss WD, Emunds HG, Herholz K. Cerebral glucose metabolism as a predictor of rehabilitation after ischemic stroke. Stroke 1993; 24: 1784–1788.

    Article  PubMed  CAS  Google Scholar 

  46. Rapoport SI. Positron emission tomography in Alzheimer’s disease in relation to disease pathogenesis-a critical-review. Cereb Brain Metab Rev 1991; 3: 297–335.

    CAS  Google Scholar 

  47. Herholz K, Perani D, Salmon E, FrancK G, Fazio F, Heiss W-D, Comar D. Comparability of FDG PET studies in probable Alzheimer’s disease. J Nucl Med 1993; 34: 1460–1466.

    PubMed  CAS  Google Scholar 

  48. Haxby JV, Grady CL, Koss E, et al. Longitudinal-study of cerebral metabolic asymmetries and associated neuropsychological patterns in early dementia of the Alzheimer type. Arch Neurol 1990; 47: 753–760.

    PubMed  CAS  Google Scholar 

  49. Mielke R, Herholz K, Grond M,, Kessler J, Heiss WD. Differences of regional cerebral glucose-metabolism between presenile and senile dementia of Alzheimer type. Neurobiol Aging 1992; 13: 93–98.

    Article  PubMed  CAS  Google Scholar 

  50. Heiss WD, Hebold I, Klinkhammer P, et al. Effect of piracetam on cerebral glucose-metabolism in Alzheimers-disease as measured by positron emission tomography. J Cereb Blood Flow Metab 1988; 8: 613–617.

    Article  PubMed  CAS  Google Scholar 

  51. Nordberg A. Effect of long-term treatment with tacrine (THA) in Alzheimer’s disease as visualized by PET. Acta Neurol Scand 1993; 88 (suppl 149): 62–65.

    Article  Google Scholar 

  52. Kuhl D, Metter EJ, Riege WH. Patterns of 1Cmrglu determined in parkinson’s disease by the FDG method. Ann Neurol 1984; 15: 419–424.

    Article  PubMed  CAS  Google Scholar 

  53. Snow BJ, Tooyama I, McGeer EG, et al. Human positron emission tomographic [F-18] fluorodopa studies correlate with dopamine cell counts and levels. Ann Neurol 1993; 34: 324–330.

    Article  PubMed  CAS  Google Scholar 

  54. Sawle GV, Wroe SJ, Lees AJ, Brooks DJ, Frackowiak RSJ. The identification of presymptomatic parkinsonism-clinical and F-18-dopa positron emission tomography studies in an irish kindred. Ann Neurol 1992; 32: 609–617.

    Article  PubMed  CAS  Google Scholar 

  55. Vingerhoets FIG, Snow BJ, Lee CS, Schulzer M, Mak E, Calne DB. Longitudinal fluorodopa positron emission tomographic studies of the evolution of idiopathic parkinsonism. Ann Neurol 1994; 36: 759–764.

    Article  PubMed  CAS  Google Scholar 

  56. Holthoff VA, Vieregge P, Kessler J, et al. Discordant twins with parkinsons-disease-positron emission tomography and early signs of impaired cognitive circuits. Ann Neurol 1994; 36: 176–182.

    Article  PubMed  CAS  Google Scholar 

  57. Brooks DJ. Positron emission tomographic studies of the subcortical degenerations and dystonia. Sem Neurol 1989; 9: 351–359.

    Article  CAS  Google Scholar 

  58. Brooks DJ. PET studies on the early and differential diagnosis of Parkinson’s disease. Neurology 1993; 43 (suppl 6): S6–S16.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Herholz, K. (1996). Assessment of Brain Tumors, Cerebrovascular and Cerebral Degenerative Diseases with PET. In: Bares, R.B., Lucignani, G. (eds) Clinical PET. Developments in Nuclear Medicine, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0309-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0309-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6624-2

  • Online ISBN: 978-94-009-0309-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics