Skip to main content

Advertisement

Log in

Dose Reduction in Brain [18F]FDG PET/MRI: Give It Half a Chance

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) offers promising tools for evaluating brain disorders, including the minimization of exposure to ionizing radiation. Considering the length of scanning time with PET/MRI systems and their high sensitivity, we assumed that the activity could be reduced by one half compared with recommended activity for brain 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET exams without degrading image quality.

Procedures

We retrospectively simulated the reduction of injected activity (1 vs. 2 MBq/kg, [18F]FDG) in 100 patients assessed for cognitive impairment with simultaneous PET/MRI imaging. A list-mode acquisition was used to generate a 20-min image set as a reference (PETSTD) and to simulate a low-dose injection with a 10-min image (PETLD). We tested the reproducibility between PETLD and PETSTD with a blinded visual interpretation by two nuclear physicians asked to classify metabolic patterns, and a quantitative analysis conducted with regions-of-interest. Voxelwise comparisons between patients suggestive of Alzheimer’s disease (AD) and frontotemporal dementia (FTD) were also conducted.

Results

The intra-operator agreement was high between the PETSTD and PETLD visual assessments for both readers (kappa 0.92 and 0.99). SUV ratios were strongly reproducible (intraclass correlation coefficient 0.95). The voxelwise and regional comparisons between AD vs. FTD metabolic profiles yielded very similar results with PETSTD and PETLD.

Conclusions

A reduction of the [18F]FDG dose down to 1 MBq/kg is possible when performing 20-min brain PET/MRI without modifying diagnostic performance and quantitative assessments. The advantage is a significant reduction in the patient effective dose, which is non-negligible in longitudinal follow-up studies and in research protocols involving healthy volunteers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Varrone A, Asenbaum S, Vander Borght T et al (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36:2103–2110

    Article  Google Scholar 

  2. Waxman AD, Herholz K, Lewis D, et al. (2009) Society of Nuclear Medicine procedure guideline for FDG PET brain imaging, version 1.0 approved February 8, 2009. Society of Nuclear Medicine.

  3. Conti M (2011) Focus on time-of-flight PET: the benefits of improved time resolution. Eur J Nucl Med Mol Imaging 38:1147–1157

    Article  Google Scholar 

  4. Jakoby B, Bercier Y, Conti M et al (2011) Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol 56:2375–2389

    Article  CAS  Google Scholar 

  5. Schaefferkoetter J, Casey M, Townsend D, El Fakhri G (2013) Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study. Phys Med Biol 58:1465–1478

    Article  Google Scholar 

  6. Catana C, Guimaraes A, Rosen B (2013) PET and MR imaging: the odd couple or a match made in heaven? J Nucl Med 54:815–824

    Article  CAS  Google Scholar 

  7. Barthel H, Schroeter ML, Hoffmann K-T, Sabri O (2015) PET/MR in dementia and other neurodegenerative diseases. Semin Nucl Med 45:224–233

    Article  Google Scholar 

  8. Wagadarikar A, Ivan A, Dolinsky S, McDaniel DL (2014) Sensitivity improvement of time-of-flight PET detector through recovery of Compton scattered annihilation photons. IEEE Trans Nucl Sci 461:121–125

    Article  Google Scholar 

  9. Queiroz M, Delso G, Wollenweber S et al (2015) Dose optimization in TOF-PET/MR compared to TOF-PET/CT. PLoS One 10:e0128842. https://doi.org/10.1371/journal.pone.0128842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grant AM, Deller TW, Khalighi MM, Maramraju SH, Delso G, Levin CS (2016) NEMA NU 2-2012 performance studies for the SIPM-based ToF-PET component of the GE SIGNA PET/MR system. Med Phys 43:2334–2343

    Article  Google Scholar 

  11. Spick C, Herrmann K, Czernin J (2016) 18F-FDG PET/CT and PET/MRI perform equally well in cancer: evidence from studies on more than 2300 patients. J Nucl Med 57:420–430

    Article  CAS  Google Scholar 

  12. Behr SC, Bahroos E, Hawkins RA et al (2018) Quantitative and visual assessments toward potential sub-mSv or ultrafast FDG PET using high-sensitivity TOF PET in PET/MRI. Mol Imaging Biol 20:492–500

    Article  Google Scholar 

  13. Sah BR, Ghafoor S, Burger IA et al (2018) Feasibility of 18F-FDG dose reductions in breast cancer PET/MRI. J Nucl Med 59:1817–1822

    Article  CAS  Google Scholar 

  14. Soret M, Maisonobe J, Jaubert O et al (2016) Comparaison des performances et de la qualité d’image clinique d’un TEP/TDM dernière génération et d’un TEP/IRM TOF. Médecine Nucléaire 40:210

    Article  Google Scholar 

  15. Wampl S, Rausch I, Traub-Weidinger T, Beyer T, Gröschl M, Cal-González J (2017) Quantification accuracy of neuro-oncology PET data as a function of emission scan duration in PET/MR compared to PET/CT. Eur J Radiol 95:257–264

    Article  Google Scholar 

  16. Xu J, Gong E, Pauly J, Zaharchuk G (2017) 200x Low-dose PET reconstruction using deep learning. Computer science. Computer vision and pattern recognition. Available via https://arxiv.org/pdf/1712.04119.pdf. Accessed 13 Sept 13, 2018

  17. Balyasnikova S, Löfgren J, de Nijs RR et al (2012) PET/MR in oncology: an introduction with focus on MR and future perspectives for hybrid imaging. Am J Nucl Med Mol Imaging 2:458–474

    PubMed  PubMed Central  Google Scholar 

  18. Oehmigen M, Ziegler S, Jacoby B et al (2014) Radiotracer dose reduction in integrated PET/MR: implications from national electrical manufacturers association phantom studies. J Nucl Med 55:1361–1367

    Article  Google Scholar 

  19. Hoffman E, Cutler RP, Digby W, Mazziotta JC (1990) 3-D phantom to simulate cerebral blood flow and metabolic images for PET. IEEE Trans Nucl Sci 37:616–620

    Article  Google Scholar 

  20. National Electrical Manufacturers Association (2001) NEMA standards publication NU 2-2001: performance measurements of positron emission tomographs. National Electrical Manufacturers Association, Rosslyn

    Google Scholar 

  21. Boellaard R, Rausch I, Beyer T et al (2015) Quality control for quantitative multicenter whole-body PET/MR studies: a NEMA image quality phantom study with three current PET/MR systems. Med Phys 42:5961–5969

    Article  Google Scholar 

  22. Habert M-O, Marie S, Bertin H et al (2016) Optimization of brain PET imaging for a multicentre trial: the French CATI experience. EJNMMI Phys 3:6

    Article  Google Scholar 

  23. Wollenweber SD, Ambwani S, Delso G et al (2013) Evaluation of an atlas-based PET head attenuation correction using PET/CT and MR patient data. IEEE Trans Nucl Sci 60:3383–3390

    Article  Google Scholar 

  24. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  Google Scholar 

  25. Martí-Climent JM, Prieto E, Morán V et al (2017) Effective dose estimation for oncological and neurological PET/CT procedures. EJNMMI Res 7:37

    Article  Google Scholar 

  26. Hays MT, Watson EE, Thomas SR, Stabin M (2002) MIRD dose estimate report no. 19: radiation absorbed dose estimates from 18F-FDG. J Nucl Med 43:210–214

    CAS  PubMed  Google Scholar 

  27. Fällmar D, Lilja J, Kilander L et al (2016) Validation of true low-dose 18F-FDG PET of the brain. Am J Nucl Med Mol Imaging 6:269–276

    PubMed  PubMed Central  Google Scholar 

  28. Fällmar D, Lilja J, Danfors T et al (2018) Z-score maps from low-dose 18F-FDG PET of the brain in neurodegenerative dementia. Am J Nucl Med Mol Imaging 8:239–246

    PubMed  PubMed Central  Google Scholar 

  29. Surti S (2015) Update on time-of-flight PET imaging. J Nucl Med 56:98–105

    Article  Google Scholar 

  30. Sekine T, Delso G, Zeimpekis KG et al (2018) Reduction of 18F-FDG dose in clinical PET/MR imaging by using silicon photomultiplier detectors. Radiology (1):249–259

    Article  Google Scholar 

  31. Gatidis S, Schmidt H, la Fougère C et al (2016) Defining optimal tracer activities in pediatric oncologic whole-body 18F-FDG-PET/MRI. Eur J Nucl Med Mol Imaging 43:2283–2289

    Article  CAS  Google Scholar 

  32. Seith F, Schmidt H, Kunz J et al (2017) Simulation of tracer dose reduction in 18F-FDG PET/MRI: effects on oncologic reading, image quality, and artifacts. J Nucl Med 58:1699–1705

    Article  CAS  Google Scholar 

  33. Kumar A, Braun A, Schapiro M et al (1992) Cerebral glucose metabolic rates after 30 and 45 minute acquisitions: a comparative study. J Nucl Med 33:2103–2105

    CAS  PubMed  Google Scholar 

  34. Catana C (2015) Motion correction options in PET/MRI. Semin Nucl Med 45:212–223

    Article  Google Scholar 

  35. Chen KT, Salcedo S, Chonde DB et al (2018) MR-assisted PET motion correction in simultaneous PET/MRI studies of dementia subjects. J Magn Reson Imaging 48:1288–1296

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marine Soret.

Ethics declarations

Conflict of Interest

The authors of this manuscript declare relationships with the following companies: General Electric Healthcare. Maya Khalifé was a PET/MR scientist sponsored by GE Healthcare. We have no other potential conflict of interest relevant to this article to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soret, M., Piekarski, E., Yeni, N. et al. Dose Reduction in Brain [18F]FDG PET/MRI: Give It Half a Chance. Mol Imaging Biol 22, 695–702 (2020). https://doi.org/10.1007/s11307-019-01398-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-019-01398-3

Key words

Navigation