Skip to main content

Lipid Hydroperoxide-Derived Adduction to Amino-Phospholipid in Biomembrane

  • Chapter
  • First Online:
Lipid Hydroperoxide-Derived Modification of Biomolecules

Part of the book series: Subcellular Biochemistry ((SCBI,volume 77))

Abstract

Phospholipids such as phosphatidylethanolamine and phosphatidylcholine play crucial roles in the biological system to maintain the cellular environmental condition. Despite that, oxidative stress targets these phospholipids containing polyunsaturated fatty acids and accompanies the oxidized phospholipids. Recent studies have been suggested that oxidized phospholipids have the relationship with inflammation and might induce the atherosclerosis formation by uptake of oxidized LDL through scavenger receptor as ligands. Red blood cells, which have been studied the bilayer model, are also modified by oxidative stress because hemoglobin can mediate and produce the reactive oxygen species, which leads to lipid peroxidation of biomembrane. In these oxidation processes of biomolecules, hexanoylation against phosphatidylethanolamine and phosphatidylserine, which has the primary amine and is the target of this modification, generates the oxidized membrane such as erythrocyte ghosts. This unique structure of phosphatidylethanolamine and phosphatidylserine is possibly the useful biomarker to evaluate the oxidation of biomembrane in vivo using liquid chromatography tandem mass spectrometry and monoclonal antibody.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bochkov VN, Oskolkova OV, Birukov KG et al (2010) Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal 12:1009–1059

    Article  CAS  PubMed  Google Scholar 

  • Bratosin D, Mazurier J, Tissier JP et al (1998) Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. A review. Biochimie 80:173–195

    Article  CAS  PubMed  Google Scholar 

  • Davis B, Koster G, Douet LJ et al (2008) Electrospray ionization mass spectrometry identifies substrates and products of lipoprotein-associated phospholipase A2 in oxidized human low density lipoprotein. J Biol Chem 283:6428–6437

    Article  CAS  PubMed  Google Scholar 

  • Febbraio M, Podrez EA, Smith JD et al (2000) Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 105:1049–1056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Febbraio M, Hajjar DP, Silverstain RL (2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 108:785–791

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hisaka S, Kato Y, Kitamoto N et al (2009) Chemical and immunochemical identification of propanoyllysine derived from oxidized n-3 polyunsaturated fatty acid. Free Radic Biol Med 46:1463–1471

    Article  CAS  PubMed  Google Scholar 

  • Hisaka S, Yamada N, Naito K et al (2010) The immunological and chemical detection of N-(hexanoyl)phosphatidylethanolamine and N-(hexanoyl)phosphatidylserine in an oxidative model induced by carbon tetrachloride. Biochem Biophys Res Commun 393:631–636

    Article  CAS  PubMed  Google Scholar 

  • Huber J, Vales A, Mitulovic G et al (2002) Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol 22:101–107

    Article  CAS  PubMed  Google Scholar 

  • Inouye M, Mio T, Sumino K (1999) Formation of 9-hydroxy linoleic acid as a product of phospholipid peroxidation in diabetic erythrocyte membranes. Biochim Biophys Acta 1438:204–212

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Mori Y, Makino Y et al (1999) Formation of N ε-(hexanonyl)lysine in protein exposed to lipid hydroperoxide. A plausible marker for lipid hydroperoxide-derived protein modification. J Biol Chem 274:20406–20414

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Miyake Y, Yamamoto K et al (2000) Preparation of N ε-(hexanonyl)lysine: application to the evaluation of protective effects of flavonoid supplementation against exercise-induced oxidative stress in rat skeletal muscle. Biochem Biophys Res Commun 274:389–393

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Fujii H, Okada M et al (2006) Formation of Nepsilon-(succinyl)lysine in vivo: a novel marker for docosahexaenoic acid-derived protein modification. J Lipid Res 47:1386–1398

    Article  CAS  PubMed  Google Scholar 

  • Kim EH, Sevanian A (1991) Hematin- and peroxide-catalyzed peroxidation of phospholipid liposomes. Arch Biochem Biophys 288:324–330

    Article  CAS  PubMed  Google Scholar 

  • Kunjathoor VV, Febbraio M, Podrez EA et al (2002) Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 277:49982–499878

    Article  CAS  PubMed  Google Scholar 

  • Lang F, Gulbins E, Lang PA et al (2010) Ceramide in suicidal death of erythrocyte. Cell Physiol Biochem 26:21–28

    Article  CAS  PubMed  Google Scholar 

  • Leitinger N (2008) The role of phospholipid oxidation products in inflammatory and autoimmune diseases: evidence from animal models and in humans. Subcell Biochem 49:325–350

    Article  PubMed  Google Scholar 

  • Li Z, Aqellon LB, Vance DE (2005) Phosphatidylcholine homeostasis and liver failure. J Biol Chem 280:37798–37802

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Aquellon LB, Allen TM et al (2006) The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab 3:321–331

    Article  CAS  PubMed  Google Scholar 

  • Lin HL, Xu XS, Lu HX et al (2008) Pathological mechanisms of erythrocyte-induced vulnerability of atherosclerotic plaques. Med Hypotheses 70:105–108

    Article  CAS  PubMed  Google Scholar 

  • Linderkamp O, Friederichs E, Boehler T et al (1993) Age dependency of red blood cell deformability and density: studies in transient erythroblastopenia of childhood. Br J Haematol 83:125–129

    Article  CAS  PubMed  Google Scholar 

  • Mclaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438:605–611

    Article  CAS  PubMed  Google Scholar 

  • Rachmilewitz EA (1974) Denaturation of the normal and abnormal hemoglobin molecule. Semin Hematol 11:441–462

    CAS  PubMed  Google Scholar 

  • Ravandi A, Babaei S, Leung R et al (2004) Phospholipids and oxophospholipids in atherosclerotic plaques at different stages of plaque development. Lipids 39:97–109

    CAS  PubMed  Google Scholar 

  • Ross R (1999) Atherosclerosis-an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  • Rouser G, Yamamoto A, Kritchevsky G (1971) Cellular membranes. Structure and regulation of lipid class composition species differences, changes with age, and variations in some pathological states. Arch Intern Med 127:1105–1121

    Article  CAS  PubMed  Google Scholar 

  • Sadrzadeh SM, Graf E, Panter SS et al (1984) Hemoglobin. A biologic Fenton reagent. J Biol Chem 259:14354–14356

    CAS  PubMed  Google Scholar 

  • Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Kurihara Y, Takeya M et al (1997) A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386:292–296

    Article  CAS  PubMed  Google Scholar 

  • Tsimikas S, Kiechl S, Willeit J et al (2006) Oxidized phospholipids predict the presence and progression of carotid and femoralatherosclerosis and symptomatic cardiovascular disease: five-year prospective results from the Bruneck study. J Am Coll Cardiol 47:2219–2228

    Article  CAS  PubMed  Google Scholar 

  • Tuji K, Kawai Y, Kato Y et al (2003) Formation of N-(hexanoyl)ethanolamine, a novel phosphatidylethanolamine adduct, during the oxidation of erythrocyte membrane and low-density lipoprotein. Biochem Biophys Res Commun 306:706–711

    Article  Google Scholar 

  • Vance JE, Steenbergen R (2005) Metabolism and functions of phosphatidylserine. Prog Lipid Res 44:207–234

    Article  CAS  PubMed  Google Scholar 

  • Yeung T, Gilbert GE, Shi J et al (2008) Membrane phosphatidylserine regulates surface charge and protein localization. Science 319:210–213

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Hisaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hisaka, S., Osawa, T. (2014). Lipid Hydroperoxide-Derived Adduction to Amino-Phospholipid in Biomembrane. In: Kato, Y. (eds) Lipid Hydroperoxide-Derived Modification of Biomolecules. Subcellular Biochemistry, vol 77. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7920-4_3

Download citation

Publish with us

Policies and ethics