Skip to main content

The Role of Phospholipid Oxidation Products in Inflammatory and Autoimmune Diseases

Evidence from Animal Models and in Humans

  • Chapter
Lipids in Health and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 49))

Abstract

Since the discovery of oxidized phospholipids (OxPL) and their implication as modulators of inflammation in cardiovascular disease, roles for these lipid oxidation products have been suggested in many other disease settings. Lipid oxidation products accumulate in inflamed and oxidatively damaged tissue, where they are derived from oxidative modification of lipoproteins, but also from membranes of cells undergoing apoptosis. Thus, increased oxidative stress as well as decreased clearance of apoptotic cells has been implied to contribute to accumulation of OxPL in chronically inflamed tissues.

A central role for OxPL in disease states associated with dyslipedemia, including atherosclerosis, diabetes and its complications, metabolic syndrome, and renal insufficiency, as well as general prothrombotic states, has been proposed. In addition, in organs which are constantly exposed to oxidative stress, including lung, skin, and eyes, increased levels of OxPL are suggested to contribute to inflammatory conditions. Moreover, accumulation of OxPL causes general immunmodulation and may lead to autoimmune diseases. Evidence is accumulating that OxPL play a role in lupus erythematosus, antiphospholipid syndrome, and rheumatoid arthritis. Last but not least, a role for OxPL in neurological disorders including multiple sclerosis (MS), Alzheimer’s and Parkinson’s disease has been suggested.

This chapter will summarize recent findings obtained in animal models and from studies in humans that indicate that formation of OxPL represents a general mechanism that may play a major role in chronic inflammatory and autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agachan, B. et al. "Paraoxonase 55 and 192 polymorphism and its relationship to serum paraoxonase activity and serum lipids in Turkish patients with non-insulin dependent diabetes mellitus." Cell Biochem. Funct. 22 (2004) 163–8.

    PubMed  CAS  Google Scholar 

  • Ahmed, Z. et al. "Apolipoprotein A-I promotes the formation of phosphatidylcholine core aldehydes that are hydrolyzed by paraoxonase (PON-1) during high density lipoprotein oxidation with a peroxynitrite donor." J. Biol. Chem. 276 (2001) 24473–81.

    PubMed  CAS  Google Scholar 

  • Alisi, A. and V. Nobili "Molecular pathogenesis of nonalcoholic steatohepatitis: today and tomorrow." Am. J. Pathol. 171 (2007) 712–3.

    PubMed  Google Scholar 

  • Allanson, M. and V.E. Reeve "Immunoprotective UVA (320–400 nm) irradiation upregulates heme oxygenase-1 in the dermis and epidermis of hairless mouse skin." J. Invest Dermatol. 122 (2004) 1030–6.

    PubMed  CAS  Google Scholar 

  • Amara, A. et al. "Autoantibodies to malondialdehyde-modified epitope in connective tissue diseases and vasculitides." Clin. Exp. Immunol 101 (1995) 233–8.

    PubMed  CAS  Google Scholar 

  • Angeli, V. et al. "Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization." Immunity 21 (2004) 561–74.

    PubMed  CAS  Google Scholar 

  • Arai, H. et al. "Platelet-activating factor acetylhydrolase (PAF-AH)." J. Biochem. (Tokyo) 131 (2002) 635–40.

    CAS  Google Scholar 

  • Baier, J. et al. "Direct detection of singlet oxygen generated by UVA irradiation in human cells and skin." J. Invest Dermatol. 127 (2007) 1498–506.

    PubMed  CAS  Google Scholar 

  • Basu-Modak, S., P. Luscher, and R.M. Tyrrell "Lipid metabolite involvement in the activation of the human heme oxygenase-1 gene." Free Radic. Biol. Med. 20 (1996) 887–97.

    PubMed  CAS  Google Scholar 

  • Basu-Modak, S. and R.M. Tyrrell "Singlet oxygen: a primary effector in the ultraviolet A/near-visible light induction of the human heme oxygenase gene." Cancer Res. 53 (1993) 4505–10.

    PubMed  CAS  Google Scholar 

  • Berliner, J.A. et al. "Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics." Circulation 91 (1995) 2488–96.

    PubMed  CAS  Google Scholar 

  • Berliner, J.A. et al. "Evidence for a role of phospholipid oxidation products in atherogenesis." Trends Cardiovasc. Med. 11 (2001) 142–7.

    PubMed  CAS  Google Scholar 

  • Berliner, J.A. et al. "Minimally modified low density lipoprotein stimulates monocyte endothelial interactions." J. Clin. Invest 85 (1990) 1260–6.

    PubMed  CAS  Google Scholar 

  • Berliner, J.A. and A.D. Watson "A role for oxidized phospholipids in atherosclerosis." N. Engl. J. Med. 353 (2005) 9–11.

    PubMed  CAS  Google Scholar 

  • Bilge, I. et al. "Is paraoxonase 192 gene polymorphism a risk factor for membranoproliferative glomerulonephritis in children?" Cell Biochem. Funct. 25 (2007) 159–65.

    PubMed  CAS  Google Scholar 

  • Binder, C.J. et al. "Innate and acquired immunity in atherogenesis." Nat. Med. 8 (2002): 1218–26.

    PubMed  CAS  Google Scholar 

  • Binder, C.J. et al. "Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL." Nat. Med. 9 (2003) 736–43.

    PubMed  CAS  Google Scholar 

  • Binder, C.J. et al. "The role of natural antibodies in atherogenesis." J. Lipid Res. 46 (2005) 1353–63.

    PubMed  CAS  Google Scholar 

  • Birukov, K.G. et al. "Epoxycyclopentenone-containing oxidized phospholipids restore endothelial barrier function via Cdc42 and Rac." Circ. Res. 95 (2004) 892–901.

    PubMed  CAS  Google Scholar 

  • Birukova, A.A. et al. "Polar head groups are important for barrier-protective effects of oxidized phospholipids on pulmonary endothelium." Am. J. Physiol Lung Cell Mol. Physiol 292 (2007) L924–L935.

    PubMed  CAS  Google Scholar 

  • Bluml, S. et al. "Oxidized phospholipids negatively regulate dendritic cell maturation induced by TLRs and CD40." J. Immunol. 175 (2005) 501–8.

    PubMed  Google Scholar 

  • Bochkov, V.N. "Inflammatory profile of oxidized phospholipids." Thromb. Haemost. 97 (2007) 348–54.

    PubMed  CAS  Google Scholar 

  • Bochkov, V.N. et al. "Protective role of phospholipid oxidation products in endotoxin-induced tissue damage." Nature 419 (2002a) 77–81.

    CAS  Google Scholar 

  • Bochkov, V.N. and N. Leitinger "Anti-inflammatory properties of lipid oxidation products." J. Mol. Med. 81 (2003) 613–26.

    PubMed  CAS  Google Scholar 

  • Bochkov, V.N. et al. "Oxidized phospholipids stimulate tissue factor expression in human endothelial cells via activation of ERK/EGR-1 and Ca(++)/NFAT." Blood 99 (2002b) 199–206.

    CAS  Google Scholar 

  • Bochkov, V.N. et al. "Oxidized phospholipids stimulate angiogenesis via autocrine mechanisms, implicating a novel role for lipid oxidation in the evolution of atherosclerotic lesions." Circ. Res. 99 (2006) 900–8.

    PubMed  CAS  Google Scholar 

  • Bossola, M. et al. "Oxidized low-density lipoprotein biomarkers in patients with end-stage renal failure: Acute effects of hemodialysis." Blood Purif. 25 (2007) 457–65.

    PubMed  CAS  Google Scholar 

  • Boullier, A. et al. "Phosphocholine as a pattern recognition ligand for CD36." J. Lipid Res. 46 (2005) 969–76.

    PubMed  CAS  Google Scholar 

  • Buga, G.M. et al. "D-4F reduces EO6 immunoreactivity, SREBP-1c mRNA levels, and renal inflammation in LDL receptor-null mice fed a Western diet." J. Lipid Res. 49 (2008) 192–205.

    PubMed  CAS  Google Scholar 

  • Cao, H. et al. "Lack of association between carotid intima-media thickness and paraoxonase gene polymorphism in non-insulin dependent diabetes mellitus." Atherosclerosis 138 (1998) 361–6.

    PubMed  CAS  Google Scholar 

  • Chadjichristos, C.E. and B.R. Kwak "Connexins: new genes in atherosclerosis." Ann. Med. 39 (2007) 402–11.

    PubMed  CAS  Google Scholar 

  • Chang, M.K. et al. "Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition." Proc. Natl. Acad. Sci. USA 96 (1999) 6353–8.

    PubMed  CAS  Google Scholar 

  • Chang, M.K. et al. "C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: Phosphorylcholine of oxidized phospholipids." Proc. Natl. Acad. Sci. USA 99 (2002) 13043–8.

    PubMed  CAS  Google Scholar 

  • Chatterjee, S. et al. "Identification of a biologically active component in minimally oxidized low density lipoprotein (MM-LDL) responsible for aortic smooth muscle cell proliferation." Glycoconj. J 20 (2004) 331–8.

    PubMed  CAS  Google Scholar 

  • Cvetkovic, J.T. et al. "Increased levels of autoantibodies against copper-oxidized low density lipoprotein, malondialdehyde-modified low density lipoprotein and cardiolipin in patients with rheumatoid arthritis." Rheumatology (Oxford) 41 (2002) 988–95.

    CAS  Google Scholar 

  • Cyrus, T. et al. "Absence of 12/15-lipoxygenase expression decreases lipid peroxidation and atherogenesis in apolipoprotein e-deficient mice." Circulation 103 (2001) 2277–82.

    PubMed  CAS  Google Scholar 

  • Dada, N., N.W. Kim, and R.L. Wolfert "Lp-PLA2: an emerging biomarker of coronary heart disease." Expert. Rev. Mol. Diagn. 2 (2002) 17–22.

    PubMed  CAS  Google Scholar 

  • DeMaio, L. et al. "Oxidized phospholipids mediate occludin expression and phosphorylation in vascular endothelial cells." Am. J. Physiol Heart Circ. Physiol 290 (2006) H674–H683.

    PubMed  CAS  Google Scholar 

  • Dessi, M. et al. "Influence of the human paraoxonase polymorphism (PON1 192) on the carotid-wall thickening in a healthy population." Coron. Artery Dis. 10 (1999) 595–9.

    PubMed  CAS  Google Scholar 

  • Dominguez, J.H. et al. "Studies of renal injury III: Lipid-induced nephropathy in type II diabetes." Kidney Int. 57 (2000) 92–104.

    PubMed  CAS  Google Scholar 

  • Eligini, S. et al. "Oxidized phospholipids inhibit cyclooxygenase-2 in human macrophages via nuclear factor-kappaB/IkappaB- and ERK2-dependent mechanisms." Cardiovasc. Res. 55 (2002) 406–15.

    PubMed  CAS  Google Scholar 

  • Esterbauer, H. et al. "Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes." J. Lipid. Res. 28 (1987) 495–509.

    PubMed  CAS  Google Scholar 

  • Exner, M. et al. "Lipoproteins accumulate in immune deposits and are modified by lipid peroxidation in passive Heymann nephritis." Am. J. Pathol. 149 (1996) 1313–20.

    PubMed  CAS  Google Scholar 

  • Febbraio, M. et al. "Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice." J. Clin. Invest 105 (2000) 1049–56.

    PubMed  CAS  Google Scholar 

  • Feng, X. et al. "ApoE-/-Fas-/- C57BL/6 mice: a novel murine model simultaneously exhibits lupus nephritis, atherosclerosis, and osteopenia." J. Lipid Res. 48 (2007) 794–805.

    PubMed  CAS  Google Scholar 

  • Fortunato, G. et al. "A paraoxonase gene polymorphism, PON 1 (55), as an independent risk factor for increased carotid intima-media thickness in middle-aged women." Atherosclerosis 167 (2003) 141–8.

    PubMed  CAS  Google Scholar 

  • Friedman, E. "The role of the atherosclerotic process in the pathogenesis of age-related macular degeneration." Am. J. Ophthalmol. 130 (2000) 658–63.

    PubMed  CAS  Google Scholar 

  • Frostegard, J. et al. "Lipid peroxidation is enhanced in patients with systemic lupus erythematosus and is associated with arterial and renal disease manifestations." Arthritis Rheum. 52 (2005) 192–200.

    PubMed  CAS  Google Scholar 

  • Fruhwirth, G.O., A. Loidl, and A. Hermetter "Oxidized phospholipids: From molecular properties to disease." Biochim. Biophys. Acta 1772 (2007) 718–36.

    PubMed  CAS  Google Scholar 

  • Furio, L. et al. "UVA radiation impairs phenotypic and functional maturation of human dermal dendritic cells." J. Invest Dermatol. 125 (2005) 1032–8.

    PubMed  CAS  Google Scholar 

  • Furnkranz, A. et al. "Oxidized phospholipids trigger atherogenic inflammation in murine arteries." Arteriosclerosis, Thrombosis, and Vascular Biology 25 (2005) 633–8.

    PubMed  CAS  Google Scholar 

  • Gao, S. et al. "Phospholipid hydroxyalkenals, a subset of recently discovered endogenous CD36 ligands, spontaneously generate novel furan-containing phospholipids lacking CD36 binding activity in vivo." J. Biol. Chem. 281 (2006) 31298–308.

    PubMed  CAS  Google Scholar 

  • Greenberg, M.E. et al. "The lipid whisker model of the structure of oxidized cell membranes." J. Biol. Chem. 283 (2008) 2385–96.

    PubMed  CAS  Google Scholar 

  • Gruber, F. et al. "Photooxidation generates biologically active phospholipids that induce heme oxygenase-1 in skin cells." J Biol. Chem. 282 (2007) 16934–41.

    PubMed  CAS  Google Scholar 

  • Gruss, C.J. et al. "Effects of low dose ultraviolet A-1 phototherapy on morphea." Photodermatol. Photoimmunol. Photomed. 17 (2001) 149–55.

    PubMed  CAS  Google Scholar 

  • Hartwich, J. et al. "Regulation of platelet adhesion by oxidized lipoproteins and oxidized phospholipids." Platelets. 13(May 2002) 141–51.

    PubMed  CAS  Google Scholar 

  • Hayem, G. et al. "Anti-oxidized low-density-lipoprotein (OxLDL) antibodies in systemic lupus erythematosus with and without antiphospholipid syndrome." Lupus 10 (2001) 346–51.

    PubMed  CAS  Google Scholar 

  • Hazen, S.L. and G.M. Chisolm "Oxidized phosphatidylcholines: pattern recognition ligands for multiple pathways of the innate immune response." Proc. Natl. Acad. Sci. USA 99 (2002) 12515–7.

    PubMed  CAS  Google Scholar 

  • Heery, J.M. et al. "Oxidatively modified LDL contains phospholipids with platelet-activating factor-like activity and stimulates the growth of smooth muscle cells." J. Clin. Invest. 96 (1995) 2322–30.

    PubMed  CAS  Google Scholar 

  • Hiraishi, S., S. Horie, and Y. Seyama "Oxidation products of phospholipid-containing delta-9 fatty acids specifically impair the activity of tissue factor pathway inhibitor." Biochem. Biophys. Res. Commun. 298 (2002) 468–73.

    PubMed  CAS  Google Scholar 

  • Holzer, G. et al. "The dietary soy flavonoid genistein abrogates tissue factor induction in endothelial cells induced by the atherogenic oxidized phospholipid oxPAPC." Thromb. Res. 120 (2007) 71–9.

    PubMed  CAS  Google Scholar 

  • Hoppe, G. et al. "Oxidized low density lipoprotein-induced inhibition of processing of photoreceptor outer segments by RPE." Invest Ophthalmol. Vis. Sci. 42 (2001) 2714–20.

    PubMed  CAS  Google Scholar 

  • Hoppe, G. et al. "Products of lipid peroxidation induce missorting of the principal lysosomal protease in retinal pigment epithelium." Biochim. Biophys. Acta 1689 (2004a) 33–41.

    CAS  Google Scholar 

  • Hoppe, G. et al. "Accumulation of oxidized lipid-protein complexes alters phagosome maturation in retinal pigment epithelium." Cell Mol. Life Sci. 61 (2004b) 1664–74.

    CAS  Google Scholar 

  • Horkko, S. et al. "Immunological responses to oxidized LDL." Free Radic. Biol. Med. 28 (2000) 1771–9.

    PubMed  CAS  Google Scholar 

  • Horkko, S. et al. "Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins." J. Clin. Invest. 103 (1999) 117–28.

    PubMed  CAS  Google Scholar 

  • Huang, L. et al. "Oxidation-induced changes in human lens epithelial cells. 1. Phospholipids." Free Radic. Biol. Med. 41 (2006) 1425–32.

    PubMed  CAS  Google Scholar 

  • Huang, M.S. et al. "Atherogenic phospholipids attenuate osteogenic signaling by BMP-2 and parathyroid hormone in osteoblasts." J. Biol. Chem. 282 (2007) 21237–43.

    PubMed  CAS  Google Scholar 

  • Huber, J. et al. "Specific monocyte adhesion to endothelial cells induced by oxidized phospholipids involves activation of cPLA2 and lipoxygenase." J. Lipid Res. 47 (2006) 1054–62.

    PubMed  CAS  Google Scholar 

  • Huber, J. et al. "Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions." Arterioscler Thromb VAsc Biol 22 (2002) 101–7.

    PubMed  CAS  Google Scholar 

  • Ikeda, T. et al. "Paraoxonase gene polymorphisms and plasma oxidized low-density lipoprotein level as possible risk factors for exudative age-related macular degeneration." Am. J. Ophthalmol. 132 (2001) 191–5.

    PubMed  CAS  Google Scholar 

  • Ikura, Y. et al. "Localization of oxidized phosphatidylcholine in nonalcoholic fatty liver disease: impact on disease progression." Hepatology 43 (2006) 506–14.

    PubMed  CAS  Google Scholar 

  • Isakson, B.E. et al. "Oxidized phospholipids alter vascular connexin expression, phosphorylation, and heterocellular communication." Arterioscler. Thromb. Vasc. Biol. 26 (2006) 2216–21.

    PubMed  CAS  Google Scholar 

  • Ishii, H. et al. "Oxidized phospholipids in oxidized low-density lipoprotein downregulate thrombomodulin transcription in vascular endothelial cells through a decrease in the binding of RAR{beta}-RXR{alpha} heterodimers and Sp1 and 3 to their binding sequences in the TM promoter." Blood 101 (2003) 4767–74.

    Google Scholar 

  • Ishikawa, K. et al. "Induction of heme oxygenase-1 inhibits the monocyte transmigration induced by mildly oxidized LDL." J. Clin. Invest. 100 (1997) 1209–16.

    PubMed  CAS  Google Scholar 

  • Itabe, H. et al. "A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholines and polypeptides." J. Biol. Chem. 269 (1994) 15274–9.

    PubMed  CAS  Google Scholar 

  • Kakafika, A.I. et al. "The PON1 M55L gene polymorphism is associated with reduced HDL-associated PAF-AH activity." J. Lipid Res. 44 (2003) 1919–26.

    PubMed  CAS  Google Scholar 

  • Khuseyinova, N. et al. "Association between Lp-PLA2 and coronary artery disease: focus on its relationship with lipoproteins and markers of inflammation and hemostasis." Atherosclerosis 182 (2005) 181–8.

    PubMed  CAS  Google Scholar 

  • Kiechl, S. et al. "Oxidized phospholipids, lipoprotein(a), lipoprotein-associated phospholipase A2 activity, and 10-year cardiovascular outcomes: prospective results from the Bruneck study." Arterioscler. Thromb. Vasc. Biol. 27 (2007) 1788–95.

    PubMed  CAS  Google Scholar 

  • Knapp, S. et al. "Oxidized phospholipids inhibit phagocytosis and impair outcome in gram-negative sepsis in vivo." J. Immunol. 178 (2007) 993–1001.

    PubMed  CAS  Google Scholar 

  • Kono, N. et al. "Protection against oxidative stress-induced hepatic injury by intracellular type II platelet-activating factor acetylhydrolase by metabolism of oxidized phospholipids in vivo." J. Biol. Chem. 283 (2008) 1628–36.

    PubMed  CAS  Google Scholar 

  • Koppaka, V. and P.H. Axelsen "Accelerated accumulation of amyloid beta proteins on oxidatively damaged lipid membranes." Biochemistry 39 (2000) 10011–6.

    PubMed  CAS  Google Scholar 

  • Koppaka, V. et al. "Early synergy between Abeta42 and oxidatively damaged membranes in promoting amyloid fibril formation by Abeta40." J. Biol. Chem. 278 (2003) 36277–84.

    PubMed  CAS  Google Scholar 

  • Kronke, G. et al. "Oxidized phospholipids induce expression of human heme oxygenase-1 involving activation of cAMP-responsive element-binding protein." J. Biol. Chem. 278 (2003) 51006–14.

    PubMed  Google Scholar 

  • Kronke, G. and N. Leitinger "Oxidized phospholipids at the interface of innate and adaptive immunity." Future Lipidol. 1 (2006) 623–30.

    Google Scholar 

  • Kwak, B.R. et al. "Reduced connexin43 expression inhibits atherosclerotic lesion formation in low-density lipoprotein receptor-deficient mice." Circulation 107 (2003) 1033–9.

    PubMed  CAS  Google Scholar 

  • Laskowitz, D.T. et al. "Altered immune responses in apolipoprotein E-deficient mice." J. Lipid Res. 41 (2000) 613–20.

    PubMed  CAS  Google Scholar 

  • Legat, F.J. et al. "Reduction of treatment frequency and UVA dose does not substantially compromise the antipsoriatic effect of oral psoralen-UVA." J. Am. Acad. Dermatol. 51 (2004a) 746–54.

    Google Scholar 

  • Legat, F.J. et al. "The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure." Exp. Dermatol. 13 (2004b) 242–50.

    CAS  Google Scholar 

  • Leitinger, N. "Oxidized phospholipids as triggers of inflammation in atherosclerosis." Mol. Nutr. Food Res. 49 (2005) 1063–71.

    PubMed  CAS  Google Scholar 

  • Leitinger, N. et al. "Structurally similar oxidized phospholipids differentially regulate endothelial binding of monocytes and neutrophils." Proc. Natl. Acad. Sci. USA 96 (1999) 12010–5.

    PubMed  CAS  Google Scholar 

  • Li, L., X.P. Wang, and K. Wu "The therapeutic effect of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine in rodents with acute necrotizing pancreatitis and its mechanism." Pancreas 35 (2007) e27–e36.

    PubMed  Google Scholar 

  • Loidl, A. et al. "Oxidized phospholipids in minimally modified low density lipoprotein induce apoptotic signaling via activation of acid sphingomyelinase in arterial smooth muscle cells." J Biol Chem. 278 (2003) 32921–8.

    PubMed  CAS  Google Scholar 

  • Ludewig, B. et al. "Dendritic cells in autoimmune diseases." Curr. Opin. Immunol. 13 (2001) 657–62.

    PubMed  CAS  Google Scholar 

  • Lusis, A.J. "Atherosclerosis." Nature 407 (2000) 233–41.

    PubMed  CAS  Google Scholar 

  • Mackness, B. et al. "High C-reactive protein and low paraoxonase1 in diabetes as risk factors for coronary heart disease." Atherosclerosis 186 (2006a) 396–401.

    CAS  Google Scholar 

  • Mackness, B. et al. "Serum paraoxonase (PON1) 55 and 192 polymorphism and paraoxonase activity and concentration in non-insulin dependent diabetes mellitus." Atherosclerosis 139 (1998a) 341–9.

    CAS  Google Scholar 

  • Mackness, B., P. McElduff, and M.I. Mackness "The paraoxonase-2-310 polymorphism is associated with the presence of microvascular complications in diabetes mellitus." J. Intern. Med. 258 (2005) 363–8.

    PubMed  CAS  Google Scholar 

  • Mackness, B. et al. "Human paraoxonase-1 overexpression inhibits atherosclerosis in a mouse model of metabolic syndrome." Arterioscler. Thromb. Vasc. Biol. 26 (2006b) 1545–50.

    CAS  Google Scholar 

  • Mackness, M.I. and P.N. Durrington "HDL, its enzymes and its potential to influence lipid peroxidation." Atherosclerosis 115 (1995b) 243–53.

    CAS  Google Scholar 

  • Mackness, M.I. and P.N. Durrington "Paraoxonase: another factor in NIDDM cardiovascular disease." Lancet 346 (1995a) 856.

    CAS  Google Scholar 

  • Mackness, M.I. et al. "Paraoxonase and coronary heart disease." Curr. Opin. Lipidol. 9 (1998b) 319–24.

    CAS  Google Scholar 

  • Malleier, J.M. et al. "Regulation of protein C inhibitor (PCI) activity by specific oxidized and negatively charged phospholipids." Blood 109 (2007) 4769–76.

    PubMed  CAS  Google Scholar 

  • Mang, R. and J. Krutmann "UVA-1 Phototherapy." Photodermatol. Photoimmunol. Photomed. 21 (2005) 103–8.

    PubMed  Google Scholar 

  • Marathe, G.K. et al. "Inflammatory platelet-activating factor-like phospholipids in oxidized low density lipoproteins are fragmented alkyl phosphatidylcholines." J. Biol. Chem. 274 (1999) 28395–404.

    PubMed  CAS  Google Scholar 

  • Marathe, G.K., G.A. Zimmerman, and T.M. McIntyre "Platelet-activating factor acetylhydrolase, and not paraoxonase-1, is the oxidized phospholipid hydrolase of high density lipoprotein particles." J. Biol. Chem. 278 (2003) 3937–47.

    PubMed  CAS  Google Scholar 

  • Marathe, G.K. et al. "Activation of vascular cells by PAF-like lipids in oxidized LDL." Vascular Pharmacol. 38 (2002) 193–200.

    CAS  Google Scholar 

  • Mastorikou, M., M. Mackness, and B. Mackness "Defective metabolism of oxidized phospholipid by HDL from people with type 2 diabetes." Diabetes 55 (2006) 3099–103.

    PubMed  CAS  Google Scholar 

  • Mattila, J.P., K. Sabatini, and P.K. Kinnunen "Oxidized phospholipids as potential novel drug targets." Biophys. J. 93 (2007) 3105–12.

    PubMed  CAS  Google Scholar 

  • Miketova, P. et al. "Oxidative changes in cerebral spinal fluid phosphatidylcholine during treatment for acute lymphoblastic leukemia." Biol. Res. Nurs. 6 (2005) 187–95.

    PubMed  Google Scholar 

  • Miller, Y.I. et al. "Oxidized low density lipoprotein and innate immune receptors." Curr. Opin. Lipidol. 14 (2003a) 437–45.

    CAS  Google Scholar 

  • Miller, Y.I. et al. "Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells." J. Biol. Chem. 278 (2003b) 1561–8.

    CAS  Google Scholar 

  • Miyoshi, M. et al. "Gene delivery of paraoxonase-1 inhibits neointimal hyperplasia after arterial balloon-injury in rabbits fed a high-fat diet." Hypertens. Res. 30 (2007) 85–91.

    PubMed  CAS  Google Scholar 

  • Mullick, A.E., P.S. Tobias, and L.K. Curtiss "Modulation of atherosclerosis in mice by Toll-like receptor 2." J. Clin. Invest 115 (2005) 3149–56.

    PubMed  CAS  Google Scholar 

  • Mullins, R.F. et al. "Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease." FASEB J. 14 (2000) 835–46.

    PubMed  CAS  Google Scholar 

  • Mwaikambo, B.R. et al. "Activation of CD36 inhibits and induces regression of inflammatory corneal neovascularization." Invest Ophthalmol. Vis. Sci. 47 (2006) 4356–64.

    PubMed  Google Scholar 

  • Nakamura, T., P.M. Henson, and R.C. Murphy "Occurrence of oxidized metabolites of arachidonic acid esterified to phospholipids in murine lung tissue." Anal. Biochem. 262 (1998) 23–32.

    PubMed  CAS  Google Scholar 

  • Ng, C.J. et al. "The paraoxonase gene family and atherosclerosis." Free Radic. Biol. Med. 38 (2005) 153–63.

    PubMed  CAS  Google Scholar 

  • Nonas, S. et al. "Oxidized phospholipids reduce ventilator-induced vascular leak and inflammation in vivo." Critical Care, 2008.

    Google Scholar 

  • Nonas, S. et al. "Oxidized phospholipids reduce vascular leak and inflammation in rat model of acute lung injury." Am. J Respir. Crit Care Med. 173 (2006) 1130–8.

    PubMed  CAS  Google Scholar 

  • Palinski, W. et al. "Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma." J. Clin. Invest. 98 (1996) 800–14.

    PubMed  CAS  Google Scholar 

  • Parhami, F. et al. "Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients." Arterioscler. Thromb. Vasc. Biol. 17 (1997) 680–7.

    PubMed  CAS  Google Scholar 

  • Parhami, F. et al. "Atherogenic high-fat diet reduces bone mineralization in mice." J. Bone Miner. Res. 16 (2001) 182–8.

    PubMed  CAS  Google Scholar 

  • Pidkovka, N.A. et al. "Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro." Circ. Res. 101 (2007) 792–801.

    PubMed  CAS  Google Scholar 

  • Podrez, E.A. et al. "Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype." Nat. Med. 13 (2007) 1086–95.

    PubMed  CAS  Google Scholar 

  • Podrez, E.A. et al. "A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions 1." J. Biol. Chem. 277 (2002a) 38517–23.

    CAS  Google Scholar 

  • Podrez, E.A. et al. "Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36." J. Biol. Chem. 277 (2002b) 38503–16.

    CAS  Google Scholar 

  • Qin, J. et al. "Oxidized phosphatidylcholine is a marker for neuroinflammation in multiple sclerosis brain." J. Neurosci. Res. 85 (2007) 977–84.

    PubMed  CAS  Google Scholar 

  • Ross, B.M. et al. "Elevated activity of phospholipid biosynthetic enzymes in substantia nigra of patients with Parkinson's disease." Neuroscience 102 (2001) 899–904.

    PubMed  CAS  Google Scholar 

  • Sampson, M.J. et al. "Paraoxonase-1 (PON-1) genotype and activity and in vivo oxidized plasma low-density lipoprotein in Type II diabetes." Clin. Sci. (Lond) 109 (2005) 189–97.

    CAS  Google Scholar 

  • Sampson, M.J. et al. "Plasma F2 isoprostanes: direct evidence of increased free radical damage during acute hyperglycemia in type 2 diabetes." Diabetes Care 25 (2002) 537–41.

    PubMed  CAS  Google Scholar 

  • Shamshiev, A.T. et al. "Dyslipidemia inhibits Toll-like receptor-induced activation of CD8alpha-negative dendritic cells and protective Th1 type immunity." J. Exp. Med. 204 (2007) 441–52.

    PubMed  CAS  Google Scholar 

  • Shi, H. et al. "Formation of phospholipid hydroperoxides and its inhibition by alpha-tocopherol in rat brain synaptosomes induced by peroxynitrite." Biochem. Biophys. Res. Commun. 257 (1999) 651–6.

    PubMed  CAS  Google Scholar 

  • Shih, D.M. et al. "Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis." Nature 394 (1998) 284–7.

    PubMed  CAS  Google Scholar 

  • Shih, D.M. et al. "Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis." J. Biol. Chem. 275 (2000) 17527–35.

    PubMed  CAS  Google Scholar 

  • Smiley, P.L. et al. "Oxidatively fragmented phosphatidylcholines activate human neutrophils through the receptor for platelet-activating factor." J. Biol. Chem. 266 (1991) 11104–10.

    PubMed  CAS  Google Scholar 

  • Subbanagounder, G. et al. "Determinants of bioactivity of oxidized phospholipids. Specific oxidized fatty acyl groups at the sn-2 position." Arterioscler. Thromb. Vasc. Biol. 20 (2000) 2248–54.

    PubMed  CAS  Google Scholar 

  • Subbanagounder, G. et al. "Evidence that phospholipid oxidation products and/or platelet-activating factor play an important role in early atherogenesis : in vitro and In vivo inhibition by WEB 2086." Circ. Res. 85 (1999) 311–8.

    PubMed  CAS  Google Scholar 

  • Subbanagounder, G., A.D. Watson, and J.A. Berliner "Bioactive products of phospholipid oxidation: isolation, identification, measurement and activities." Free Radic. Biol. Med. 28 (2000) 1751–61.

    PubMed  CAS  Google Scholar 

  • Sun, M. et al. "Light-induced oxidation of photoreceptor outer segment phospholipids generates ligands for CD36-mediated phagocytosis by retinal pigment epithelium: a potential mechanism for modulating outer segment phagocytosis under oxidant stress conditions." J. Biol. Chem. 281 (2006) 4222–30.

    PubMed  CAS  Google Scholar 

  • Suzuki, M. et al. "Oxidized phospholipids in the macula increase with age and in eyes with age-related macular degeneration." Mol. Vis. 13(2007): 772–8.

    PubMed  CAS  Google Scholar 

  • Svenungsson, E. et al. "Risk factors for cardiovascular disease in systemic lupus erythematosus." Circulation 104 (2001) 1887–93.

    PubMed  CAS  Google Scholar 

  • Tobias, P. and L.K. Curtiss "Thematic review series: The immune system and atherogenesis. Paying the price for pathogen protection: toll receptors in atherogenesis." J. Lipid Res. 46 (2005) 404–11.

    PubMed  CAS  Google Scholar 

  • Tsimikas, S. "Oxidized low-density lipoprotein biomarkers in atherosclerosis." Curr. Atheroscler. Rep. 8 (2006b) 55–61.

    Google Scholar 

  • Tsimikas, S. "Oxidative biomarkers in the diagnosis and prognosis of cardiovascular disease." Am. J. Cardiol. 98 (2006a) 9P–17P.

    CAS  Google Scholar 

  • Tsimikas, S. et al. "Increased plasma oxidized phospholipid:apolipoprotein B-100 ratio with concomitant depletion of oxidized phospholipids from atherosclerotic lesions after dietary lipid-lowering: a potential biomarker of early atherosclerosis regression." Arterioscler. Thromb. Vasc. Biol. 27 (2007) 175–81.

    PubMed  CAS  Google Scholar 

  • Tsimikas, S. et al. "Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease." N. Engl. J Med. 353 (2005) 46–57.

    PubMed  CAS  Google Scholar 

  • Tsimikas, S. et al. "Oxidized phospholipids predict the presence and progression of carotid and femoral atherosclerosis and symptomatic cardiovascular disease: five-year prospective results from the Bruneck study." J. Am. Coll. Cardiol. 47 (2006) 2219–28.

    PubMed  CAS  Google Scholar 

  • Tsimikas, S., W. Palinski, and J.L. Witztum "Circulating autoantibodies to oxidized LDL correlate with arterial accumulation and depletion of oxidized LDL in LDL receptor-deficient mice." Arterioscler. Thromb. Vasc. Biol. 21 (2001) 95–100.

    PubMed  CAS  Google Scholar 

  • Tsimikas, S., L.D. Tsironis, and A.D. Tselepis "New insights into the role of lipoprotein(a)-associated lipoprotein-associated phospholipase A2 in atherosclerosis and cardiovascular disease." Arterioscler. Thromb. Vasc. Biol. 27 (2007) 2094–9.

    PubMed  CAS  Google Scholar 

  • Tsimikas, S. and J.L. Witztum "Measuring circulating oxidized low-density lipoprotein to evaluate coronary risk." Circulation 103 (2001) 1930–2.

    PubMed  CAS  Google Scholar 

  • Turunen, P. et al. "Adenovirus-mediated gene transfer of Lp-PLA2 reduces LDL degradation and foam cell formation in vitro." J. Lipid Res. 45 (2004) 1633–9.

    PubMed  CAS  Google Scholar 

  • Tward, A. et al. "Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice." Circulation 106 (2002) 484–90.

    PubMed  CAS  Google Scholar 

  • Uhlson, C. et al. "Oxidized phospholipids derived from ozone-treated lung surfactant extract reduce macrophage and epithelial cell viability." Chem. Res. Toxicol. 15 (2002) 896–906.

    PubMed  CAS  Google Scholar 

  • Walterscheid, J.P., S.E. Ullrich, and D.X. Nghiem "Platelet-activating factor, a molecular sensor for cellular damage, activates systemic immune suppression." J. Exp. Med. 195 (2002) 171–9.

    PubMed  CAS  Google Scholar 

  • Walton, K.A. et al. "Specific phospholipid oxidation products inhibit ligand activation of toll-like receptors 4 and 2." Arterioscler. Thromb. Vasc. Biol. 23 (2003a) 1197–203.

    CAS  Google Scholar 

  • Walton, K.A. et al. "Receptors involved in the oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine-mediated synthesis of interleukin-8. A role for Toll-like receptor 4 and a glycosylphosphatidylinositol-anchored protein." J. Biol. Chem. 278 (2003b) 29661–6.

    CAS  Google Scholar 

  • Watson, A.D. et al. "Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein." J. Clin. Invest. 96 (1995) 2882–91.

    PubMed  CAS  Google Scholar 

  • Watson, A.D. et al. "Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo." J. Biol. Chem. 272 (1997) 13597–607.

    PubMed  CAS  Google Scholar 

  • Wu, G.S. and N.A. Rao "Activation of NADPH oxidase by docosahexaenoic acid hydroperoxide and its inhibition by a novel retinal pigment epithelial protein." Invest Ophthalmol. Vis. Sci. 40 (1999) 831–9.

    PubMed  CAS  Google Scholar 

  • Yamada, Y. et al. "Correlations between plasma platelet-activating factor acetylhydrolase (PAF-AH) activity and PAF-AH genotype, age, and atherosclerosis in a Japanese population." Atherosclerosis 150 (2000) 209–16.

    PubMed  CAS  Google Scholar 

  • Zalewski, A. et al. "Lp-PLA2: a new kid on the block." Clin. Chem. 52 (2006) 1645–50.

    PubMed  CAS  Google Scholar 

  • Zhang, R. et al. "Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation." J Biol Chem. 277 (2002) 46116–22.

    PubMed  CAS  Google Scholar 

  • Zieseniss, S. et al. "Modified phosphatidylethanolamine as the active component of oxidized low density lipoprotein promoting platelet prothrombinase activity." J. Biol. Chem. 276 (2001) 19828–35.

    PubMed  CAS  Google Scholar 

  • Zimmerman, G.A. et al. "The platelet-activating factor signaling system and its regulators in syndromes of inflammation and thrombosis." Crit Care Med. 30 (2002) S294–S301.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Leitinger, N. (2008). The Role of Phospholipid Oxidation Products in Inflammatory and Autoimmune Diseases. In: Quinn, P.J., Wang, X. (eds) Lipids in Health and Disease. Subcellular Biochemistry, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8830-8_12

Download citation

Publish with us

Policies and ethics