Skip to main content

Part of the book series: Forestry Sciences ((FOSC,volume 81))

Abstract

Traditional tree improvement programs are long-term endeavours requiring extensive resources. They require establishing mating designs, installing progeny tests on multiple sites to evaluate parents and their offspring over large geographic areas, monitoring those tests over extended periods of time, and eventual analysis of measurements to assess economic traits. Most tree breeding programs follow the classical recurrent selection scheme, resulting in the generation of multiple breeding and production populations. This process, while successful in attaining appreciable gains, remained static for a long time. The availability of plentiful, reliable, and most of all increasingly affordable genetic markers brought about drastic changes to present-day breeding methods. In this chapter, we focus on four significant genetic marker-dependent approaches with significant potential to directly or indirectly change contemporary tree breeding methods. These include pedigree reconstruction, pedigree-free models, association genetics, and genomic selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard RW (1960) Principles of plant breeding. Wiley, New Year

    Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    Article  PubMed  Google Scholar 

  • Ball RD (2005) Experimental designs for reliable detection of linkage disequilibrium in unstructured random population association studies. Genetics 170:859–873

    Article  PubMed  CAS  Google Scholar 

  • Bennett BD, Xiong Q, Mukherjee S, Furey TS (2012) A predictive framework for integrating disparate genomic data types using sample-specific gene set enrichment analysis and multi-task learning. PLoS One 7(9):e44635

    Article  PubMed  CAS  Google Scholar 

  • Burdon RD, Shelbourne CJA (1971) Breeding populations for recurrent selection: conflicts and possible solutions. N Z J For Sci 1:174–193

    Google Scholar 

  • Callaham RZ (1964) Provenance research: investigation of genetic diversity associated with geography. Unasylva 18:40–50

    Google Scholar 

  • Campbell RK (1986) Mapped genetic variation of Douglas-fir to guide seed transfer in southwest Oregon. Silvae Genet 35:85–95

    Google Scholar 

  • Cappa EP, Lstiburek M, Yanchuk AD, El-Kassaby YA (2011) Two-dimensional penalized splines via Gibbs sampling to account for spatial variability in forest genetic trials with small amount of information available. Silvae Genet 60:25–35

    Google Scholar 

  • Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, Buckler ES, Flint-Garcia SA (2012) Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol 158:824–834

    Article  PubMed  CAS  Google Scholar 

  • Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M (2009) Mapping complex disease traits with global gene expression. Nat Rev Genet 10(3):184–194

    Article  PubMed  CAS  Google Scholar 

  • Crosbie, TM, Eathington, SR, Johnson, GR, Edwards, M, Reiter, R, Stark, S et al (2003) Plant breeding: past, present, and future. In: Lamkey, KR, Lee, M (eds) Plant breeding: the Arnel R. Hallauer International Symposium, Mexico City. 17–23 Aug 2003. Blackwell, Oxford, UK, pp 1–50

    Google Scholar 

  • Ding C, McAuley L, Meitner MJ, El-Kassaby YA (2012) Evaluating interior spruce seed deployment with GIS-based modeling using British Columbia’s Prince George seed planning zone as a model. Silvae Genet 61:271–279

    Google Scholar 

  • Eckert AJ, van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, González-Martínez SC, Neale DB (2010) Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taedaL., Pinaceae). Genetics 185:969–982

    Article  PubMed  CAS  Google Scholar 

  • El-Kassaby YA, Lstibůrek M (2009) Breeding without breeding. Genet Res 91:111–120

    Article  Google Scholar 

  • El-Kassaby YA, Cappa EP, Liewlaksaneeyanawin C, KlápÅ¡te J, Lstiburek M (2011) Breeding without breeding: is a complete pedigree necessary for efficient breeding? PLoS One 6:e25737

    Article  PubMed  CAS  Google Scholar 

  • El-Kassaby YA, KlápÅ¡te J, Guy RD (2012) Breeding without Breeding: selection using the genomic best linear unbiased predictor method (GBLUP). New For 43:631–637. doi:10.1007/s11056-012-9338-4

    Article  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, New York

    Google Scholar 

  • Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans Roy Soc Edinb 52:399–433

    Article  Google Scholar 

  • Gianola D, de los Campos G, Hill WG, Manfredi E, Fernando R (2009) Additive genetic variability and the Bayesian alphabet. Genetics 183:347–363

    Article  PubMed  Google Scholar 

  • Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic animals and their use inbreeding programmes. Nat Rev Genet 10:381–391

    Article  PubMed  CAS  Google Scholar 

  • Grattapaglia D, Resende MDV (2011) Genomic selection in forest tree breeding. Tree Genet Genomes 7:241–255

    Article  Google Scholar 

  • Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinforma 12:186

    Article  Google Scholar 

  • Haig D (2011) Does heritability hide in epistasis between linked SNPs? Eur J Hum Genet 19:123

    Article  PubMed  Google Scholar 

  • Hansen OK, McKinney LV (2010) Establishment of a quasi-field trial in Abies nordmanniana – test of a new approach to forest tree breeding. Tree Genet Genomes 6:345–355

    Article  Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443

    Article  PubMed  CAS  Google Scholar 

  • Heffner EL, Jannink J-L, Sorrells ME (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. The Plant Genome 4:65–75

    Article  Google Scholar 

  • Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph, Ontario

    Google Scholar 

  • Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 4:e1000008

    Article  PubMed  Google Scholar 

  • Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106:9362–9367

    Article  PubMed  CAS  Google Scholar 

  • Isik F, Whetten R, Zapata-Valenzuela J, Ogut F, McKeand S (2011) Genomic selection in loblolly pine – from lab to field. From IUFRO tree biotechnology conference 2011: from genomes to integration and delivery. BMC Proc 5(Suppl 7):I8

    Article  Google Scholar 

  • Jayawickrama KJS, Carson MJ (2000) A breeding strategy for the New Zealand radiata pine breeding cooperative. Silvae Genet 49:82–90

    Google Scholar 

  • Jones AG, Ardren WR (2003) Methods of parentage analysis in natural populations. Mol Ecol 12:2511–2523

    Article  PubMed  CAS  Google Scholar 

  • Kemper KE, Daetwyler HD, Visscher PM, Goddard ME (2012) Comparing linkage and association analyses in sheep points to a better way of doing GWAS. Genet Res (Camb) 94:191–203

    Article  CAS  Google Scholar 

  • KlápÅ¡tÄ› J, Lstibůrek M and El-Kassaby YA (2013) Estimates of genetic parameters and breeding values from western larch open-pollinated families using marker-based relationship. Tree Genet Genome (in press)

    Google Scholar 

  • Konig AO (2005) Provenance research: evaluating the spatial pattern of genetic variation. In: Geburek TH, Turok J (eds) Conservation and management of forest genetic resources in Europe. Arbora Publishers, Zvolen, pp 275–333

    Google Scholar 

  • Korecký J, KlápÅ¡tÄ› J, Lstibůrek M, Kobliha J, Nelson CD El-Kassaby YA (2013) Comparison of genetic parameters from marker-based relationship, sibship, and combined models in Scots pine multi-site open-pollinated tests. Tree Genet Genomes. doi:10.1007/s11295-013-0630-z

  • Kreimer A, Litvin O, Hao K, Molony C, Pe’er D, Pe’er I (2012) Inference of modules associated to eQTLs. Nucleic Acids Res 40:e98

    Article  PubMed  CAS  Google Scholar 

  • Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold-hardiness and wood quality-traits candidate genes in Douglas-fir. Genetics 171:2029–2041

    Article  PubMed  CAS  Google Scholar 

  • Lambeth C, Lee B-C, O’Malley D, Wheeler N (2001) Polymix breeding with parental analysis of progeny: an alternative to full-sib breeding and testing. Theor Appl Genet 103:930–943

    Article  Google Scholar 

  • Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265(5181):2037–2048

    Article  PubMed  CAS  Google Scholar 

  • Lango Allen H et al (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467(7317):832–838, 292 additional co-authors

    Article  PubMed  CAS  Google Scholar 

  • Legarra A, Misztal I (2008) Technical note: computing strategies in genome-wide selection. J Dairy Sci 91:360–366

    Article  PubMed  CAS  Google Scholar 

  • Li CC, Weeks DE, Chakravarti A (1993) Similarity of DNA fingerprints due to chance and relatedness. Hum Hered 43:45–52

    Article  PubMed  CAS  Google Scholar 

  • Li MX, Yeung JM, Cherny SS, Sham PC (2012) Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet 131(5):747–756

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    PubMed  CAS  Google Scholar 

  • McMullen MD et al (2009) Genetic properties of the maize nested association mapping population. Science 325(5941):737–740, 31 additional co-authors

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen THE, Goddard ME, Hayes BJ (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Namkoong G (1966) Inbreeding effects on estimation of genetic additive variance. For Sci 12:8–13

    Google Scholar 

  • Namkoong G, Kang HC, Brouard JS (1988) Tree breeding: principles and strategies. Springer, New York, Monograph, Theor Appl Genet 11

    Book  Google Scholar 

  • Neale D (2007) Genomics to tree breeding and forest health. Curr Opin Genet Dev 17:539–544

    Article  PubMed  CAS  Google Scholar 

  • Neale D, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9(7):325–330, ISSN 1360–1385, 07/2004

    Article  PubMed  CAS  Google Scholar 

  • O’Hagan S, Knowles J, Kell DB (2012) Exploiting genomic knowledge in optimising molecular breeding programmes: algorithms from evolutionary computing. PLoS One 7:e48862

    Article  PubMed  Google Scholar 

  • Peters DT, Musunuru K (2012) Functional evaluation of genetic variation in complex human traits. Hum Mol Genet. doi:10.1093/hmg/dds363

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135

    Article  PubMed  CAS  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253

    Article  PubMed  CAS  Google Scholar 

  • Porth I, KlápÅ¡tÄ› J, Skyba O, Lai BSK, Geraldes A, Muchero W, Tuskan GA, Douglas CJ, El-Kassaby YA, Mansfield SD (2012) Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control, and genetic correlations. New Phytol 197:777–790

    Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Rehfeldt GE (1983) Seed transfer guidelines for Douglas-fir in Central Idaho. U. S. For Serv Res Note INT-337

    Google Scholar 

  • Resende MFR, Muñoz P, Acosta JJ, Peter GF, Davis JM, Grattapaglia D, Resende MDV, Kirst M (2012) Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytol 193:617–624

    Article  PubMed  Google Scholar 

  • Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273(5281):1516–1517

    Article  PubMed  CAS  Google Scholar 

  • Rowe SJ, Tenesa A (2012) Human complex trait genetics: lifting the lid of the genomics toolbox – from pathways to prediction. Curr Genom 13:213–224

    Article  CAS  Google Scholar 

  • Spencer CC, Su Z, Donnelly P, Marchini J (2009) Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet 5:e1000477

    Article  PubMed  Google Scholar 

  • Stranger BE, Stahl EA, Raj T (2011) Progress and promise of genome-wide association studies for human complex trait genetics. Genetics 187:367–383

    Article  PubMed  CAS  Google Scholar 

  • Truong HT, Ramos AM, Yalcin F, de Ruiter M, van der Poel HJA, Huvenaars KHJ, Hogers RCJ, van Enckevort LJG, Janssen A, van Orsouw NJ, van Eijk MJT (2012) Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS One 7:e37565

    Article  PubMed  CAS  Google Scholar 

  • Tuskan GA et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604, 109 additional co-authors

    Article  PubMed  CAS  Google Scholar 

  • vanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  PubMed  CAS  Google Scholar 

  • Wang JL (2002) An estimator for pairwise relatedness using molecular markers. Genetics 160:1203–1215

    PubMed  CAS  Google Scholar 

  • White TL, Adams WT, Neale DB (2007) Forest genetics. CABI Publishing, Cambridge, MA

    Book  Google Scholar 

  • Whittaker JC, Thompson R, Denham MC (2000) Marker-assisted selection using ridge regression. Genet Res 75:249–252

    Article  PubMed  CAS  Google Scholar 

  • Wilcox PL, Amerson HV, Kuhlman EG, Liu B-H, O’Malley DM, Sederoff RR (1996) Detection of a major gene for resistance to fusiform rust disease in loblolly pine by genomic mapping. Proc Natl Acad Sci USA 93:3859–3864

    Article  PubMed  CAS  Google Scholar 

  • Wilcox PL, Echt CE, Burdon RD (2007) Gene-assisted selection: applications of association genetics for forest tree breeding (Ch 10). In: Oraguzie NC, Rikkerink EHA, Gardiner SE, de Silva HN (eds) Association mapping in plants. Springer, New York, p 278

    Google Scholar 

  • Würschum T, Maurer HP, Dreyer F, Reif JC (2012) Effect of inter- and intragenic epistasis on the heritability of oil content in rapeseed (Brassica napus L.). Theor Appl Genet 126:435–441. doi:10.1007/s00122-012-1991-7

    Article  PubMed  Google Scholar 

  • Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, Montgomery GW, Goddard ME, Visscher PM (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  PubMed  Google Scholar 

  • Zapata-Valenzuela J, Isik F, Maltecca C, Wegryzn J, Neale D, McKeand S, Whetten R (2011) BMC Proc 5(Suppl 7):P60

    Article  Google Scholar 

  • Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci USA 109:1193–1198

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousry A. El-Kassaby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

El-Kassaby, Y.A., Isik, F., Whetten, R.W. (2014). Modern Advances in Tree Breeding. In: Fenning, T. (eds) Challenges and Opportunities for the World's Forests in the 21st Century. Forestry Sciences, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7076-8_18

Download citation

Publish with us

Policies and ethics