Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 104))

  • 4189 Accesses

Abstract

Coupled computational aerodynamics is discussed. In relation to this, mesh movement, conservation, geometry alignment, stability, data interpolation, and other matters related to using moving meshes is overviewed. Code coupling software is discussed. The coupled simulations addressed encompass aeroelasticity; conjugate heat transfer and coupled aerodynamic simulations. Numerical approaches in relation to these are outlined. Examples of coupled eddy resolving simulations are reviewed along with validation levels for them and schemes used. As would be expected, there are much less examples of eddy resolving simulations for more complex, multifaceted coupled problems. However, for practical systems, such simulations are identified as being vital to gaining physically plausible solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • M.J. Aftosmis, M.J. Berger, J.E. Melton, Robust and efficient Cartesian mesh generation for component-based geometry. AIAA J. 36(6), 952–960 (1998)

    Article  Google Scholar 

  • J.J. Alonso, S. Hahn, F. Ham, M. Herrmann, G. Iaccarino, G. Kalitzin, P. LeGresley, K. Mattsson, G. Medic, P. Moin et al., CHIMPS: a high-performance scalable module for multi-physics simulations. AIAA J. 5274, 2006 (2006)

    Google Scholar 

  • D. Amirante, N.J. Hills, C.J. Barnes, Use of dynamic meshes for transient metal temperature prediction, in Proceedings of ASME Turbo Expo 2012 (2012). ASME Paper GT2012-68782

    Google Scholar 

  • Y.S. Baik, J.M. Rausch, L.P. Bernal, M.V. Ol, Experimental investigation of pitching and plunging airfoils at Reynolds number between 1×104 and 6×104. AIAA J. 4030 (2009)

    Google Scholar 

  • R.E. Bartels, A.I. Sayma, Computational aeroelastic modelling of airframes and turbomachinery: progress and challenges. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 365(1859), 2469–2499 (2007)

    Article  Google Scholar 

  • D. Boger, Efficient method for calculating wall proximity. AIAA J. 39(12), 2404–2406 (2001)

    Article  Google Scholar 

  • S. Buis, A. Piacentini, D. Déclat, PALM: a computational framework for assembling high-performance computing applications. Concurr. Comput., Pract. Exp. 18(2), 231–245 (2006)

    Article  Google Scholar 

  • H.A. Carlson, G. Berkooz, J.L. Lumley, Direct numerical simulation of flow in a channel with complex, time-dependent wall geometries: a pseudospectral method. J. Comput. Phys. 121(1), 155–175 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • H.A. Carlson, J.Q. Feng, J.P. Thomas, R.E. Kielb, K.C. Hall, E.H. Dowell, Computational models for nonlinear aeroelasticity, in 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV (2005). AIAA Paper 2005-1085

    Google Scholar 

  • L. Cavagna, P. Masarati, G. Quaranta, Simulation of maneuvering flexible aircraft by coupled multibody/CFD, in Proceedings of ECCOMAS Thematic Conference, “Multibody Dynamics 2009” (2009)

    Google Scholar 

  • R.V. Chima, D.J. Arend, R.S. Castner, J.W. Slater, P.P. Truax, CFD models of a serpentine inlet, fan, and nozzle. AIAA J. 33 (2010a)

    Google Scholar 

  • R.V. Chima, T.R. Conners, T.R. Wayman, Coupled analysis of an inlet and fan for a quiet supersonic jet. AIAA J. 479 (2010b)

    Google Scholar 

  • D.J. Clark, M.J. Jansen, G.T. Montague, An overview of magnetic bearing technology for gas turbine engines. National Aeronautics and Space Administration. NASA/TM-20 4-213177 (2004)

    Google Scholar 

  • C. Davies, P.W. Carpenter, Numerical simulation of the evolution of Tollmien-Schlichting waves over finite compliant panels. J. Fluid Mech. 335, 361–392 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • S.S. Davis, Data set 2, NACA 64A010 (NASA Ames model), Oscillatory pitching. Compendium of Unsteady Aerodynamics Measurements, AGARD (1982a), pp. 2.1–2.22. Report No. 702

    Google Scholar 

  • S.S. Davis, Data set 5, NLR 7301 Supercritical airfoil oscillatory pitching. Compendium of Unsteady Aerodynamics Measurements, AGARD (1982b), pp. 5.1–5.27. Report No. 702

    Google Scholar 

  • F.M. De Jongh, P.G. Morton, R. Holmes, The synchronous instability of a compressor rotor due to bearing journal differential heating. Discussion. J. Eng. Gas Turbines Power 118(4), 816–824 (1996)

    Article  Google Scholar 

  • I. Demirdžić, M. Perić, Space conservation law in finite volume calculations of fluid flow. Int. J. Numer. Methods Fluids 8(9), 1037–1050 (1988)

    Article  MATH  Google Scholar 

  • P. Dhopade, A.J. Neely, J. Young, K. Shankar, High-cycle fatigue of fan blades accounting for fluid-structure interaction, in Proceedings of ASME Turbo Expo 2012 (2012). ASME Paper GT2012-68102

    Google Scholar 

  • H. Doi, Fluid/structure coupled aeroelastic computations for transonic flows in turbomachinery. PhD thesis, Department of Aeronautics and Astronautics, Stanford University (2002)

    Google Scholar 

  • F. Duchaine, A. Corpron, L. Pons, V. Moureau, F. Nicoud, T. Poinsot, Development and assessment of a coupled strategy for conjugate heat transfer with large eddy simulation: application to a cooled turbine blade. Int. J. Heat Fluid Flow 30(6), 1129–1141 (2009)

    Article  Google Scholar 

  • G. Dufour, N. Gourdain, F. Duchaine, O. Vermorel, L.Y.M. Gicquel, J.F. Boussuge, T. Poinsot, Large Eddy Simulation Applications. VKI Lecture Series Numerical Investigations in Turbomachinery: The State of the Art (2009)

    Google Scholar 

  • S. Eastwood, Hybrid RANS-LES of Complex Geometry Jets. PhD thesis, University of Cambridge (2009)

    Google Scholar 

  • T. Endo, R. Himeno, Direct numerical simulation of turbulent flow over a compliant surface. J. Turbul. 3 (2002)

    Google Scholar 

  • E. Fares, W. Schröder, A differential equation for approximate wall distance. Int. J. Numer. Methods Fluids 39(8), 743–762 (2002)

    Article  MATH  Google Scholar 

  • T.H. Fransson, M. Jöcker, A. Bölcs, P. Ott, Viscous and inviscid linear/nonlinear calculations versus quasi-three-dimensional experimental cascade data for a new aeroelastic turbine standard configuration. J. Turbomach. 121(4), 717–725 (1999)

    Article  Google Scholar 

  • A.L. Gaitonde, S.P. Fiddes, A three-dimensional moving mesh method for the calculation of unsteady transonic flows, in Recent Developments and Applications in Aeronautical CFD (1993), p. 13

    Google Scholar 

  • V. Ganine, N.J. Hills, B.L. Lapworth, Nonlinear acceleration of coupled fluid-structure transient thermal problems by Anderson mixing. Int. J. Numer. Methods Fluids (2012)

    Google Scholar 

  • J.A. Garcia, Numerical investigation of non-linear aeroelastic effects on flexible high aspect ratio wings. J. Aircr. 42(4), 1025–1036 (2005)

    Article  Google Scholar 

  • M.B. Giles, Stability analysis of numerical interface conditions in fluid-structure thermal analysis. Int. J. Numer. Methods Fluids 25(4), 421–436 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • O. Hassan, K. Morgan, N. Weatherill, Unstructured mesh methods for the solution of the unsteady compressible flow equations with moving boundary components. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 365(1859), 2531–2552 (2007a)

    Article  MathSciNet  Google Scholar 

  • O. Hassan, K.A. Sørensen, K. Morgan, N.P. Weatherill, A method for time accurate turbulent compressible fluid flow simulation with moving boundary components employing local remeshing. Int. J. Numer. Methods Fluids 53(8), 1243–1266 (2007b)

    Article  MATH  Google Scholar 

  • L. He, Fourier methods for turbomachinery applications. Prog. Aerosp. Sci. 46(8), 329–341 (2010)

    Article  Google Scholar 

  • R.A. Huls, Acousto-elastic interaction in combustion chambers. PhD thesis, University of Twente (2006)

    Google Scholar 

  • R.A. Huls, A.X. Sengissen, P.J.M. Van der Hoogt, J.B.W. Kok, T. Poinsot, A. de Boer, Vibration prediction in combustion chambers by coupling finite elements and large eddy simulations. J. Sound Vib. 304(1), 224–229 (2007)

    Article  Google Scholar 

  • I.V. Iourokina, S.K. Lele, Towards large eddy simulation of film-cooling flows on a model turbine blade leading edge. AIAA J. 670 (2005)

    Google Scholar 

  • C.K. Kang, Y. Baik, L. Bernal, M.V. Ol, W. Shyy, Fluid dynamics of pitching and plunging airfoils of Reynolds number between 1×104 and 6×104. AIAA Paper 2009-0536 (2009)

    Google Scholar 

  • M. Kato, B.E. Launder, The modelling of turbulent flow around stationary and vibrating square cylinder, in 9th Symposium on Turbulent Shear Flows, Kyoto, Japan (1993), pp. 10-4-1–10-4-6

    Google Scholar 

  • C. Kato, Y. Yamade, H. Wang, Y. Guo, M. Miyazawa, T. Takaishi, S. Yoshimura, Y. Takano, Numerical prediction of sound generated from flows with a low Mach number. Comput. Fluids 36(1), 53–68 (2007)

    Article  MATH  Google Scholar 

  • H.P. Kersken, G. Ashcroft, C. Frey, O. Putz, H. Stuer, S. Schmitt, Validation of a linearized Navier-Stokes based flutter prediction tool—Part 1: numerical methods, in Proceedings of ASME Turbo Expo 2012 (2012). ASME Paper GT2012-68018

    Google Scholar 

  • R.E. Kielb, J.W. Barter, J.P. Thomas, K.C. Hall, Blade excitation by aerodynamic instabilities: a compressor blade study, in Proceedings of ASME Turbo Expo 2003 (2003). ASME Paper GT-2003-38634

    Google Scholar 

  • G. Kingsley, J.M. Siegel, Development of a multi-disciplinary computing environment (MDICE), in AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 7th, St. Louis, MO (1998). AIAA Paper 98-4738

    Google Scholar 

  • T. Knopp, K. Weinman, D. Schwamborn, Oscillating airfoil NACA0012 at 15 a basic case for aero-elasticity, in DESider a European Effort on Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 103 (2009), pp. 261–269

    Google Scholar 

  • N.C. Lambourne, Data set 7, NORA model, oscillation about a swept axis. Compendium of Unsteady Aerodynamics Measurements, AGARD (1982), pp. 7.1–7.35. Report No. 702

    Google Scholar 

  • R. Landon, Data set 3, NACA 0012, Oscillatory and Transient Pitching. Compendium of Unsteady Aerodynamics Measurements, AGARD (1982), pp. 3.1–3.25. Report No. 702

    Google Scholar 

  • R. Langtry, P. Spalart, Detached eddy simulation of a nose landing-gear cavity, in IUTAM Symposium on Unsteady Separated Flows and Their Control (Springer, Berlin, 2009), pp. 357–366

    Chapter  Google Scholar 

  • X. Liu, N. Qin, H. Xia, Fast dynamic grid deformation based on Delaunay graph mapping. J. Comput. Phys. 211(2), 405–423 (2006)

    Article  MATH  Google Scholar 

  • S. Loiodice, P.G. Tucker, J. Watson, Coupled open rotor engine intake simulations, in Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, Florida (2010). AIAA Paper 2010-840

    Google Scholar 

  • J.W. Lund, J. Tonnesen, An approximate analysis of the temperature conditions in a journal bearing. Part II: application. J. Tribol. 106, 237 (1984)

    Article  Google Scholar 

  • D.G. Mabey, Data set 6, NLR 7301 RAE wing A, oscillating flap. Compendium of Unsteady Aerodynamics Measurements, AGARD (1982), pp. 6.1–6.15. Report No. 702

    Google Scholar 

  • J.C. Marongiu, F. Leboeuf, E. Parkinson, Numerical simulation of the flow in a Pelton turbine using the meshless method smoothed particle hydrodynamics: a new simple solid boundary treatment. Proc. Inst. Mech. Eng. A, J. Power Energy 221(6), 849–856 (2007)

    Article  Google Scholar 

  • J.C. Marongiu, F. Leboeuf, J.Ë. Caro, E. Parkinson, Free surface flows simulations in Pelton turbines using an hybrid SPH-ALE method. J. Hydraul. Res. 48(S1), 40–49 (2010)

    Article  Google Scholar 

  • F. Mathey, J. Froehlich, W. Rodi, Flow in a matrix of surface-mounted cubes description of numerical methodology for test case 6.2, in 8th ERCOFTAC/IAHR/COST Workshop on Rened Turbulence Modeling, Laboratory of Applied Thermodynamics, Espon, Helsinki University of Technology, Helsinki, Finland (1999), pp. 46–49. Report 127

    Google Scholar 

  • W.J. McCroskey, K.W. McAlister, L.W. Carr, S.L. Pucci, An experimental study of dynamic stall on advanced airfoil sections. Volume 1. Summary of the experiment. Technical report, DTIC Document (1982)

    Google Scholar 

  • G. Medic, G. Kalitzin, D. You, V.D. Weide, J.J. Alonso, H. Pitsch, Integrated RANS-LES computation of an entire gas turbine jet engine, in 45th AIAA Aerospace Sciences Meeting and Exhibit (2008). AIAA Paper 2007–1117

    Google Scholar 

  • E.R. Meinders, Experimental study of heat transfer in turbulent flows over wall-mounted cubes. PhD thesis, Delft University of Technology (1998)

    Google Scholar 

  • E.R. Meinders, K. Hanjalić, Vortex structure and heat transfer in turbulent flow over a wall-mounted matrix of cubes. Int. J. Heat Fluid Flow 20(3), 255–267 (1999)

    Article  Google Scholar 

  • F.R. Menter, Zonal two equation Kappa-Omega turbulence models for aerodynamic flows. AIAA Paper 93-2906 (1993)

    Google Scholar 

  • D. Micallef, D. Witteck, A. Wiedermann, D. Klub, R. Mailach, Three-dimensional viscous flutter analysis of a turbine cascade in subsonic and transonic flows, in Proceedings of ASME Turbo Expo 2012 (2012). ASME Paper GT2012-68396

    Google Scholar 

  • C. Michler, E.H. Van Brummelen, R. De Borst, An interface Newton-Krylov solver for fluid-structure interaction. Int. J. Numer. Methods Fluids 47(10–11), 1189–1195 (2005)

    Article  MATH  Google Scholar 

  • K. Nakahashi, F. Togashi, Unstructured overset grid method for flow simulation of complex multiple body problems, in Proceedings of ICAS 2000 Congress (2000). Paper No. ICAS 0263

    Google Scholar 

  • B. Ničeno, A.D.T. Dronkers, K. Hanjalić, Turbulent heat transfer from a multi-layered wall-mounted cube matrix: a large eddy simulation. Int. J. Heat Fluid Flow 23(2), 173–185 (2002)

    Article  Google Scholar 

  • M.V. Ol, L. Bernal, C.K. Kang, W. Shyy, Shallow and deep dynamic stall for flapping low Reynolds number airfoils. Exp. Fluids 46(5), 883–901 (2009)

    Article  Google Scholar 

  • J.H. Page, P. Hield, P.G. Tucker, Inverse design of 3D multistage transonic fans at dual operating points, in Proceedings of ASME Turbo Expo 2013 (2013). ASME Paper GT2013-95062

    Google Scholar 

  • M.A. Potsdam, G.P. Guruswamy, A parallel multiblock mesh movement scheme for complex aeroelastic applications. AIAA J. 716, 2000 (2001)

    Google Scholar 

  • F. Rahman, J.A. Visser, R.M. Morris, Capturing sudden increase in heat transfer on the suction side of a turbine blade using a Navier-Stokes solver. J. Turbomach. 127(3), 552–556 (2005)

    Article  Google Scholar 

  • P. Rautaheimo, T. Siikonen, Flow in a matrix of surface-mounted cubes description of numerical methodology for test case 6.2, in 8th ERCOFTAC/IAHR/COST Workshop on Rened Turbulence Modeling, Laboratory of Applied Thermodynamics, Espon, Helsinki University of Technology, Helsinki, Finland (1999), pp. 31–36. Report 127

    Google Scholar 

  • S. Salvadori, G. Riccio, M. Insinna, F. Martelli, Analysis of combustor/vane interaction with decoupled and loosely coupled approaches, in Proceedings of ASME Turbo Expo 2012 (2012) ASME Paper GT2012-69038

    Google Scholar 

  • N. Sayma, Personal Communication (2011)

    Google Scholar 

  • J.A. Sethian, Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Shahi, J.B.W. Kok, P.R. Alemela, Simulation of 2-way fluid structure interaction in a 3D model combustor, in Proceedings of ASME Turbo Expo 2012 (2012). ASME Paper GT2012-69681

    Google Scholar 

  • M. Shevtsov, A. Soupikov, A. Kapustin, Highly parallel fast KD-tree construction for interactive ray tracing of dynamic scenes, in Computer Graphics Forum, vol. 26 (Wiley Online Library, New York, 2007), pp. 395–404

    Google Scholar 

  • W.A. Silva, R.E. Bartels, Development of reduced-order models for aeroelastic analysis and flutter prediction using the CFL3Dv6.0 code. J. Fluids Struct. 19(6), 729–745 (2004)

    Article  Google Scholar 

  • P.R. Spalart, Trends in turbulence treatments. American Institute of Aeronautics and Astronautics (2000). AIAA Paper 2000-2306

    Google Scholar 

  • P.R. Spalart, S.R. Allmaras, A one equation turbulence model for aerodynamic flows. Rech. Aérosp. 1, 5–21 (1992)

    Google Scholar 

  • P.R. Spalart, D.R. Bogue, The role of CFD in aerodynamics, off-design. Aeronaut. J. 107(1072), 323–329 (2003)

    Google Scholar 

  • D.B. Spalding, Calculation of turbulent heat transfer in cluttered spaces, in Proceedings of the 10th International Heat Transfer Conference (Society for Industrial and Applied Mathematics, Brighton, 1994)

    Google Scholar 

  • C.H. Stephens, A.S. Arena Jr., K.K. Gupta, C.A. Edwards, Application of the transpiration method for aeroservoelastic prediction using CFD. AIAA J. 2071 (1998)

    Google Scholar 

  • M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162(2), 301–337 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • J. Thomas, E. Dowell, K. Hall, C. Denegri Jr., Modeling limit cycle oscillation behavior of the F-16 fighter using a harmonic balance approach, in 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (2004). AIAA Paper 2004-1696

    Google Scholar 

  • J.P. Thomas, K.C. Hall, W.S. Clark, Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA J. 40(5) (2012)

    Google Scholar 

  • P.G. Tucker, Computation of Unsteady Internal Flows: Fundamental Methods with Case Studies (Kluwer Academic, Norwell, 2001)

    Book  Google Scholar 

  • P.G. Tucker, Computation of unsteady turbomachinery flows: Part 1 progress and challenges. Prog. Aerosp. Sci. 47(7), 522–545 (2011a)

    Article  Google Scholar 

  • P.G. Tucker, Hybrid Hamilton-Jacobi-Poisson wall distance function model. Comput. Fluids 44(1), 130–142 (2011b)

    Article  Google Scholar 

  • P.G. Tucker, P.S. Keogh, On the dynamic thermal state in a hydrodynamic bearing with a whirling journal using CFD techniques. J. Tribol. 118(2), 356–363 (1996)

    Article  Google Scholar 

  • P.G. Tucker, C.L. Rumsey, R.E. Bartels, R.T. Biedron, Transport equation based wall distance computations aimed at flows with time-dependent geometry. NASA-TM 2003-212680 (2003)

    Google Scholar 

  • P.G. Tucker, C.L. Rumsey, P.R. Spalart, R.E. Bartels, R.T. Biedron, Computations of wall distances based on differential equations. AIAA J. 43(3), 539–549 (2005)

    Article  Google Scholar 

  • N.R. Vadlamani, High fidelity large eddy simulation of turbines: current status and future outlook. PhD thesis, University of Cambridge (2013)

    Google Scholar 

  • M. Vahdati, A.I. Sayma, C. Bréard, M. Imregun, Computational study of intake duct effects on fan flutter stability. AIAA J. 40(3), 408–418 (2002)

    Article  Google Scholar 

  • J.F. van Kampen, Acoustic pressure oscillations induced by confined turbulent premixed natural gas flames. PhD thesis, University of Twente (2006)

    Google Scholar 

  • J.A. Verdicchio, J.W. Chew, N.J. Hills, Coupled Fluid/solid Heat Transfer Computation for Turbine Discs. Proceedings of ASME Turbo. Expo. 2001 (2001-GT) (2001), p. 123. ASME Paper GT2001-0205

    Google Scholar 

  • S. Vergne, J.M. Auger, F. Périé, A. Jacques, D. Nicolopoulos, Aeroelastic noise, in Large-Eddy Simulation for Acoustics, ed. by C. Wagner, T. Huttl, P. Sagaut (2007), pp. 272–293

    Google Scholar 

  • M.R. Visbal, Numerical investigation of deep dynamic stall of a plunging airfoil. AIAA J. 49(10), 2152–2170 (2011)

    Article  MathSciNet  Google Scholar 

  • C. Voigt, C. Frey, H. Kersken, Development of a generic surface mapping algorithm for fluid-structure interaction simulations in turbomachinery, in V European Conference on Computational Fluid Dynamics, Lisbon, Portugal (2010)

    Google Scholar 

  • L.B. Wigton, Optimizing CFD codes and algorithms for use on Cray computer, in Frontiers of Computational Fluid Dynamics (1998), pp. 1–15

    Google Scholar 

  • J. Wissink, W. Rodi, DNS of a laminar separation bubble affected by free-stream disturbances. ERCOFTAC Ser. 9, 213–220 (2004)

    Article  Google Scholar 

  • H. Xia, P.G. Tucker, Finite volume distance field and its application to medial axis transforms. Int. J. Numer. Methods Eng. 82(1), 114–134 (2010)

    MathSciNet  MATH  Google Scholar 

  • H. Xia, P.G. Tucker, Fast equal and biased distance fields for medial axis transform with meshing in mind. Appl. Math. Model. 35(12), 5804–5819 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • H. Xia, P.G. Tucker, W.N. Dawes, Level sets for CFD in aerospace engineering. Prog. Aerosp. Sci. 46(7), 274–283 (2010)

    Article  Google Scholar 

  • S. Xu, D. Rempfer, J. Lumley, Turbulence over a compliant surface: numerical simulation and analysis. J. Fluid Mech. 478(1), 11–34 (2003)

    MathSciNet  MATH  Google Scholar 

  • G. Yang, D.M. Causon, D.M. Ingram, R. Saunders, P. Batten, A Cartesian cut cell method for compressible flows—Part B: moving body problems. Aeronaut. J. 101(1002), 57–65 (1997)

    Google Scholar 

  • S.Y. Yoon, Z. Lin, W. Jiang, P.E. Allaire, Flow-rate observers in the suppression of compressor surge using active magnetic bearings, in Proceedings of ASME Turbo Expo 2012 (2012). ASME Paper GT2012-70011

    Google Scholar 

  • M. Zhang, A. Hou, S. Zhou, X. Yang, Analysis on flutter characteristics of transonic compressor blade row by a fluid-structure coupled method, in Proceedings of ASME Turbo Expo 2012 (2012). ASME Paper GT2012-69439

    Google Scholar 

  • B. Zhong, P.G. Tucker, kl based hybrid LES/RANS approach and its application to heat transfer simulation. Int. J. Numer. Methods Fluids 23(10), 983–1005 (2004)

    Article  Google Scholar 

  • R.J. Zwaan, Data Set 1, NACA 64A006 Oscillating Flap. Compendium of Unsteady Aerodynamics Measurements, AGARD (1982a), p. 1. Report No. 702

    Google Scholar 

  • R.J. Zwaan, Data Set 4, Supercritical airfoil oscillatory pitching and oscillatory flap. Compendium of Unsteady Aerodynamics Measurements, AGARD (1982b), pp. 4.1–4.25. Report No. 702

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tucker, P.G. (2014). Coupled Computational Aerodynamics. In: Unsteady Computational Fluid Dynamics in Aeronautics. Fluid Mechanics and Its Applications, vol 104. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7049-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7049-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7048-5

  • Online ISBN: 978-94-007-7049-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics