Skip to main content

High-Order Methods for Simulations in Engineering

  • Chapter
  • First Online:
Efficient High-Order Discretizations for Computational Fluid Dynamics

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 602))

  • 1006 Accesses

Abstract

Engineers create new things and hence always have to deal with incomplete information. A critical review is made of the accuracy of the available physical and modeling parameters. It shows that in many cases key physical and modeling parameters such as viscosities, boundary conditions, geometry, and even basic physics are not known to within 1%. This raises the question as to whether any numerical method needs to be of even higher quality than a fraction of this threshold. Thereafter work estimates for traditional high-order elements are derived. The comparison of error and work estimates shows that even for relative accuracy in the 0.1% range, which is one order below the typical accuracy of engineering interest (1% range), linear elements may outperform all higher order elements. The chapter concludes with some recent LES results that indicate that eight-order schemes on a grid of size 2h are similar to second-order schemes on a grid of size h, and some open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Atkins, H. L., & Shu. C.-W. (1998). Quadrature free implementation of discontinuous Galerkin method for hyperbolic equations. AIAA Journal, 36(5).

    Google Scholar 

  • Bassi, F., & Rebay, S. (1997). A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. Journal of Computational Physics, 131(2), 267–279.

    Article  MathSciNet  MATH  Google Scholar 

  • Bey, K. S., Oden, J. T., & Patra, A. (1996). A parallel hp-adaptive discontinuous Galerkin method for hyperbolic conservation laws. Applied Numerical Mathematics, 20, 321–336.

    Article  MathSciNet  MATH  Google Scholar 

  • Brown, J. (2010). Efficient nonlinear solvers for nodal high-order finite elements in 3-D. Journal of Scientific Computing, 45, 48–63.

    Article  MathSciNet  MATH  Google Scholar 

  • Bull, J., & Jameson, A. (2015). Simulation of the Taylor-Green vortex using high-order flux reconstruction schemes. AIAA Journal, 53(9), 2750–2761.

    Article  Google Scholar 

  • Camelli, F., & Löhner, R. (2004). Assessing maximum possible damage for contaminant release events. Engineering Computations, 21(7), 748–760.

    Article  MATH  Google Scholar 

  • Camelli, F., & Löhner, R. (2006). VLES study of flow and dispersion patterns in heterogeneous urban areas. AIAA-06-1419.

    Google Scholar 

  • Cantwell, C. D., Sherwin, S. J., Kirby, R. M., & Kelly, P. H. J. (2011). From h to p efficiently: Strategy selection for operator evaluation on hexahedral and tetrahedral elements. Computers and Fluids, 43(1), 23–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Castro, M. A., Putman, C. M., & Cebral, J. R. (2006). Computational fluid dynamics modeling of intracranial aneurysms: Effects of parent artery segmentation on intra-aneurysmal hemodynamcis. American Journal of Neuroradiology, 27, 1703–1709.

    Google Scholar 

  • Cockburn, B., Hou, S., & Shu, C.-W. (1990). TVD Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Mathematics of Computation, 55, 545–581.

    MATH  Google Scholar 

  • Cockburn, B., Karniadakis, G. E., & Shu, C.-W. (Eds.). (2000). Discontinuous Galerkin methods, theory, computation, and applications. Springer lecture notes in computational science and engineering (Vol. 11). Berlin: Springer.

    Google Scholar 

  • Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric analysis. New Jersey: Wiley.

    Book  MATH  Google Scholar 

  • Darve, E., & Löhner, R. (1997). Advanced structured-unstructured solver for electromagnetic scattering from multimaterial objects. AIAA-97-0863.

    Google Scholar 

  • DeBonis, J. R. (2013). Solutions of the Taylor–Green vortex problem using high-resolution explicit finite difference methods. NASA-TM-2013-217850, also AIAA-13-0382.

    Google Scholar 

  • de Wiart, C., Hillewaert, K., Duponcheel, M., & Winckelmans, G. (2014). Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number. International Journal for Numerical Methods in Fluids, 74(7), 469–493.

    Article  MathSciNet  Google Scholar 

  • Douglas, J., & Dupont, T. (1974). Galerkin approximation for the two-point boundary-value problem using continuous piecewise polynomial spaces. Num. Math., 22, 99–109.

    Article  MATH  Google Scholar 

  • Draper, L., (1964). ‘Freak’ ocean waves. Oceanus (X:4).

    Google Scholar 

  • Draper, L. (1971). Severe wave conditions at sea. J. Inst. Navig., 24(3), 273–277.

    Article  Google Scholar 

  • Duncan, B., Fischer, A., & Kandasamy, S. (2010). Validation of Lattice-Boltzmann aerodynamics simulation for vehicle lift prediction. ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting, (pp. 2705–2716).

    Google Scholar 

  • Figueroa, A., & Löhner, R. (2019). Postprocessing-based interpolation schemes for nested Cartesian finite difference grids of different size. International Journal for Numerical Methods in Fluids, 89(6), 196–215.

    Article  MathSciNet  Google Scholar 

  • Figueroa, A. (2020). Improvement of nested Cartesian finite difference grid solvers. PhD Thesis, George Mason University.

    Google Scholar 

  • Gassner, G., & Beck, A. (2013). On the accuracy of high-order discretizations for underresolved turbulence simulations. Theoretical and Computational Fluid Dynamics, 27, 221–237.

    Article  Google Scholar 

  • Geier, M., Pasquali, A., & Schönherr, M. (2017). Parametrization of the cumulant Lattice Boltzmann method for fourth order accurate diffusion part II: Application to flow around a sphere at drag crisis. Journal of Computational Physics, 348(1), 889–898.

    Article  MathSciNet  MATH  Google Scholar 

  • Geller, M., & Harbord, R. (1991). Moderate degree cubature formulas for 3-D tetrahedral finite element approximations. Comm. Appl. Num. Meth., 7(6), 487–495.

    Article  MATH  Google Scholar 

  • Hafez, M. (2003). Non-uniqueness problems in transonic flows. In H. Sobieczky (Ed.), IUTAM Symposium Transsonicum IV, Fluid Mechanics and its Applications (Vol. 73). Dordrecht: Springer.

    Google Scholar 

  • Hartmann, R., & Houston, P. (2008). An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations. Journal of Computational Physics, 227(22), 9670–9685.

    Article  MathSciNet  MATH  Google Scholar 

  • Haver, S. (2003). Freak wave event at Draupner Jacket January 1 1995. PTT-KU-MA: Statoil Technical Report.

    Google Scholar 

  • Helenbrook, B. T., Mavriplis, D., & Atkins, H. L. (2003). Analysis of p-multigrid for continuous and discontinuous finite element discretizations. AIAA-03-3989.

    Google Scholar 

  • Huerta, A., Angeloski, A., Roca, X., & Peraire, J. (2013). Efficiency of high-order elements for continuous and discontinuous Galerkin methods. International Journal for Numerical Methods in Engineering, 96, 529–560.

    Article  MathSciNet  MATH  Google Scholar 

  • International Workshop on High-Order CFD Methods, https://how5.cenaero.be

  • Jameson. A. (1991). Nonunique solutions to the Euler equations. AIAA-91-1625.

    Google Scholar 

  • Jinyun, Y. (1984). Symmetric Gaussian quadrature formulae for tetrahedronal regions. Computer Methods in Applied Mechanics and Engineering, 43, 348–353.

    MATH  Google Scholar 

  • Kannan, R., & Wang, Z. J. (2009). A study of viscous flux formulations for a p-multigrid spectral volume Navier-Stokes solver. Journal of Scientific Computing, 41(2), 165–199.

    Article  MathSciNet  MATH  Google Scholar 

  • Karniadakis, G. E., & Sherwin, S. J. (2005). Spectral/hp element methods for computational fluid dynamics (2nd ed.). Oxford: Oxford University Press.

    Book  MATH  Google Scholar 

  • Keast, P. (1986). Moderate-degree tetrahedral quadrature formulas. Computer Methods in Applied Mechanics and Engineering, 55, 339–348.

    Article  MathSciNet  MATH  Google Scholar 

  • Klaij, C. M., van Raalte, M. H., van der Ven, H., & van der Vegt, J. J. W. (2007). h-multigrid for space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. Journal of Computational Physics, 227(2), 1024–1045.

    Article  MathSciNet  MATH  Google Scholar 

  • Kroll, N. (2006). ADIGMA—A European project on the development of adaptive higher order variational methods for aerospace applications. In P. Wesseling, E. Oñate & J. Périaux (Eds.), Proceedings of the ECCOMAS CFD 2006, TU Delft.

    Google Scholar 

  • Laflin et al. K., (2004). Summary of data from the second AIAA CFD drag prediction workshop. AIAA-2004-0555.

    Google Scholar 

  • Levine, N. D. (1985). Superconvergent recovery of the gradient from piecewise linear finite-element approximations. IMA Journal on Numerical Analysis, 5, 407–427.

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, C., Kannan, R., & Wang, Z. J. (2009). A p-multigrid spectral difference method with explicit and implicit smoothers on unstructured triangular grids. Computers and Fluids, 38(2), 254–265.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, Y., & Chin, Y. S. (1993). Discontinuous Galerkin finite element method for Euler and Navier-Stokes equations. AIAA Journal, 31, 2016–2023.

    Article  MATH  Google Scholar 

  • Löhner, R. (2011). Error and work estimates for high order elements. AIAA-11-0211.

    Google Scholar 

  • Löhner, R. (2013). Improved error and work estimates for high order elements. International Journal for Numerical Methods in Fluids, 72(11), 1207–1218.

    Article  MathSciNet  Google Scholar 

  • Löhner, R., & Camelli, F. (2005). Optimal placement of sensors for contaminant detection based on detailed 3-D CFD simulations. Engineering Computations, 22(3), 260–273.

    Article  MATH  Google Scholar 

  • Löhner, R., Appanaboyina, S., & Cebral, J. R. (2008). Parabolic recovery of boundary gradients. Communications in Numerical Methods in Engineering, 24, 1611–1615.

    Article  MATH  Google Scholar 

  • Löhner, R., Britto, D., Michalski, A., & Haug, E. (2014a). Butterfly-effect for massively separated flows. Engineering Computations, 31(4), 742–757.

    Article  Google Scholar 

  • Löhner, R., Corrigan, A., Wichmann, K. R., & Wall, W. A. (2014b). Comparison of Lattice-Boltzmann and finite difference solvers. AIAA-2014-1439.

    Google Scholar 

  • Löhner, R., Haug, E., Michalski, A., Britto, D., Degro, A., Nanjundaiah, R., et al. (2015). Recent advances in computational wind engineering and fluid-structure interaction. Journal of Wind Engineering and Industrial Aerodynamics, 144, 14–23.

    Article  Google Scholar 

  • Löhner, R., Figueroa, A., & Degro, A. (2019). Recent advances in a Cartesian solver for industrial LES, AIAA-2019-2328.

    Google Scholar 

  • Luo, H., Baum, J. D., & Löhner, R. (2005). A p-multigrid discontinuous Galerkin method for the compressible Euler equations on unstructured grids. Journal of Computational Physics, 211, 767–783.

    Article  MATH  Google Scholar 

  • Luo, H., Baum, J. D., & Löhner, R. (2008). On the computation of steady-state compressible flows using a discontinuous Galerkin method. International Journal for Numerical Methods in Engineering, 73, 597–623.

    Article  MathSciNet  MATH  Google Scholar 

  • Mackinnon, R. J., & Carey, G. F. (1989). Superconvergent derivatives: A Taylor series analysis. International Journal for Numerical Methods in Engineering, 28, 489–509.

    Article  MathSciNet  MATH  Google Scholar 

  • Melenk, J. M., Gerdes, K., & Schwab, C. (1999). Fully discrete hp-finite elements: Fast quadrature. ETH Report, 99-15.

    Google Scholar 

  • Michalski, A., Kermel, P. D., Haug, E., Löhner, R., Wüchner, R., & Bletzinger, K.-U. (2011). Validation of the computational fluid-structure interaction simulation at real-scale tests of a flexible 29 m umbrella in natural wind flow. Journal of Wind Engineering and Industrial Aerodynamics, 99, 400–413.

    Article  Google Scholar 

  • Morgan, K., Xie, Z. Q., & Hassan, O. (2009). A parallel hybrid time domain method for large scale electromagnetic simulations. In B. H. V. Topping & P. Iványi (Eds.), Parallel, distributed and grid computing for engineering, Chapter 14 (pp. 309–328). Stirlingshire, UK: Saxe-Coburg Publications.

    Chapter  Google Scholar 

  • Nastase, C. R., & Mavriplis, D. J. (2006). High-order discontinuous Galerkin methods using an hp-multigrid approach. Journal of Computational Physics, 213(1), 330–357.

    Article  MATH  Google Scholar 

  • Nigro, A., De Bartolo, C., Hartmann, R., & Bassi, F. (2010). Discontinuous Galerkin solution of preconditioned Euler equations for very low Mach number flows. International Journal for Numerical Methods in Fluids, 63(4), 449–467.

    MathSciNet  MATH  Google Scholar 

  • Persson, P.-O., Bonet, J., & Peraire, J. (2009). Discontinuous Galerkin solution of the Navier-Stokes equations on deformable domains. Computer Methods in Applied Mechanics and Engineering, 198, 1585–1595.

    Article  MATH  Google Scholar 

  • Salas, M. D., Gumbert, C. R., & Turkel, E. (1984). Nonunique solutions to the transonic potential flow equation. AIAA Journal, 22(1), 145–146.

    Article  Google Scholar 

  • Schwab, C. (2004). p- and hp- finite element methods. Oxford: Oxford Science Publications.

    Google Scholar 

  • Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., & Mavriplis, D. (2014). CFD vision 2030 study: A path to revolutionary computational aerosciences. NASA/CR-2014-218178, NF1676L-18332.

    Google Scholar 

  • Steinhoff, J., & Jameson, A. (1981). Multiple solutions of the transonic potential flow equation. AIAA-81-1019.

    Google Scholar 

  • Thomée, V., Xu, J., & Zhang, N. Y. (1989). Superconvergence of the gradient in piecewise linear finite-element approximation to a parabolic problem. SIAM Journal on Numerical Analysis, 26(3), 553–573.

    Article  MathSciNet  MATH  Google Scholar 

  • Trottenberg, U., Oosterlee, C., & Schüller, A. (2001). Multigrid. London: Elsevier Academic Press.

    MATH  Google Scholar 

  • Visbal, M. R., & Gaitonde, D. V. (2002). On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. Journal of Computational Physics, 181(1), 155–185.

    Article  MathSciNet  MATH  Google Scholar 

  • Vos, P. E. J., Sherwin, S. J., & Kirby, R. M. (2010). From h to p efficiently: Implementing finite and spectral/hp element discretisations to achieve optimal performance at low and high order approximations. Journal of Computational Physics, 229, 5161–5181.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Z. J. (2007). High-order methods for the Euler and Navier-Stokes equations on unstructured grids. Progress in Aerospace Sciences, 43, 1–41.

    Article  Google Scholar 

  • Wheeler, M. F., & Whiteman, J. (1987). Superconvergent recovery of gradients on subdomain from piecewise linear finite element approximations. Numerical Methods P.D.E.’s, 3, 357–374.

    Google Scholar 

Download references

Acknowledgements

It is a pleasure to acknowledge many fruitful discussions on high-order methods with Profs. Ramon Codina (UPC, Barcelona), Antonio Huerta (UPC, Barcelona), Dominique Pelletier (Montreal), as well as Drs. Romain Aubry (GMU, NRL), Adrien Loseille (INRIA, Rocquencourt), Frederic Alauzet (INRIA, Rocquencourt) and Javier Principe (CIMNE, Barcelona) throughout the decades.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainald Löhner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 CISM International Centre for Mechanical Sciences, Udine

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Löhner, R. (2021). High-Order Methods for Simulations in Engineering. In: Kronbichler, M., Persson, PO. (eds) Efficient High-Order Discretizations for Computational Fluid Dynamics. CISM International Centre for Mechanical Sciences, vol 602. Springer, Cham. https://doi.org/10.1007/978-3-030-60610-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60610-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60609-1

  • Online ISBN: 978-3-030-60610-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics