Skip to main content

Strategies for Managing Feed Intolerance in Preterm Neonates

  • Chapter
  • First Online:
Nutrition for the Preterm Neonate

Abstract

Optimisation of enteral nutrition in extremely preterm neonates (gestation under 28 weeks) has become a priority considering that postnatal growth restriction is a major and almost universal issue in this population. Majority of protein and energy deficit associated with postnatal growth restriction occurs within the first two weeks of life. Manifestation of feed intolerance due to ileus of prematurity (e.g., abdominal distension, bile stained and/or increased gastric residuals) are also very common during this critical period in extremely preterm neonates.

Necrotising enterocolitis (NEC) is a potentially disastrous illness in preterm very low birth weight neonates with significant mortality, and morbidity. The outcomes of NEC are worse in extremely preterm neonates with higher mortality, need for surgery, and risk of long-term neurodevelopmental impairment after surviving surgery for the illness.

The inability to differentiate feed intolerance of prematurity from a potentially disastrous illness like NEC frequently leads to stoppage of enteral feeds during a critical period of life in extremely preterm neonates. The significant variation in clinical practice reflects the fact that evidence for many of the enteral feeding strategies for extremely preterm neonates have either inadequate or no sound scientific basis.

Evidence base for current enteral feeding practices for preterm neonates is reviewed. The proven benefits of well established strategies such as antenatal glucocorticoids and preferential use of breast milk are emphasised. Newer options for facilitating feed tolerance such as probiotics and prebiotics are discussed. Areas for further research are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark RH, Thomas P, Peabody J (2003) Extrauterine growth restriction remains a serious problem in prematurely born neonates. Pediatrics 111:986–990

    Article  PubMed  Google Scholar 

  2. Cooke RJ, Ainsworth SB, Fenton AC (2004) Postnatal growth retardation: a universal problem in preterm infants. Arch Dis Child Fetal Neonatal Ed 89:F428–F430

    Article  CAS  PubMed  Google Scholar 

  3. Embleton NE, Pang N, Cooke RJ (2001) Postnatal malnutrition and growth retardation: an inevitable consequence of current recommendations in preterm infants? Pediatrics 107:270–273

    Article  CAS  PubMed  Google Scholar 

  4. Cooke RJ, Ford A, Werkman S, Conner C, Watson D (1993) Postnatal growth in infants born between 700 and 1,500 g. J Pediatr Gastroenterol Nutr 16:130–135

    Article  CAS  PubMed  Google Scholar 

  5. Neu J, Walker WA. Nenterocolitis (2011) N Engl J. Med 364:255–264

    CAS  Google Scholar 

  6. Berman L, Moss RL (2011) Necrotizing enterocolitis: an update. Semin Fetal Neonatal Med 16:145–150

    Article  PubMed  Google Scholar 

  7. Morgan JA, Young L, McGuire W (2011) Pathogenesis and prevention of necrotizing enterocolitis. Curr Opin Infect Dis 24:183–189

    Article  PubMed  Google Scholar 

  8. Lin PW, Stoll BJ (2006) Necrotising enterocolitis. Lancet 368:1271–1283

    Article  PubMed  Google Scholar 

  9. Blakely ML, Lally KP, McDonald S et al (2005) Postoperative outcomes of extremely low birth-weight infants with necrotizing enterocolitis or isolated intestinal perforation: a prospective cohort study by the NICHD Neonatal Research Network. Ann Surg 241:984–989; discussion 989–994

    Google Scholar 

  10. Rowe MI, Reblock KK, Kurkchubasche AG et al (1994) Necrotizing enterocolitis in the extremely low birth weight infant. J Pediatr Surg 29:987–990

    Article  CAS  PubMed  Google Scholar 

  11. Schulzke SM, Deshpande GC, Patole SK (2007) Neurodevelopmental outcome of very low birth weight infants with necrotizing enterocolitis—a systematic review of observational studies. Arch Pediatr Adolesc Med 16:583–590

    Article  Google Scholar 

  12. Bisquera JA, Cooper TR, Berseth CL (2002) Impact of necrotizing enterocolitis on length of stay and hospital charges in very low birth weight infants. Pediatrics 109:423–428

    Article  PubMed  Google Scholar 

  13. Flidel-Rimon O, Branski D, Shinwell ES (2006) The fear of necrotizing enterocolitis versus achieving optimal growth in preterm infants—an opinion. Acta Paediatr 95:1341–1344

    Article  PubMed  Google Scholar 

  14. Celano P, Jumawan J, Horowitz C, Lau H, Koldovsky O (1977) Prenatal induction of sucrase activity in rat jejunum. Biochem J 162:469–472

    CAS  PubMed  Google Scholar 

  15. Moog F (1962) Developmental adaptations of alkaline phophotases in the small intestine. Fed Proc 21:51–56

    CAS  PubMed  Google Scholar 

  16. Neu J, Ozaki CK, Angelides KJ (1986) Glucocorticoid-mediated alteration of fluidity of brush border membrane in rat small intestine. Pediatr Res 20:79–82

    Article  CAS  PubMed  Google Scholar 

  17. Israel EJ, Schiffrin EJ, Carter EA, Freiberg E, Walker WA (1990) Prevention of necrotizing enterocolitis in the rat with prenatal cortisone. Gastroenterology 99:1333–1338

    CAS  PubMed  Google Scholar 

  18. Shulman RJ, Schanler RJ, Lau C, Heitkemper M, Ou CN, Smith EO (1998) Early feeding, antenatal glucocorticoids, and human milk decrease intestinal permeability in preterm infants. Pediatr Res 44:519–523

    Article  CAS  PubMed  Google Scholar 

  19. Bousvaros A, Walker WA (1990) Development and function of the intestinal mucosal barrier. In: McDonald TT (ed) Ontogeny of the human system of the gut. CRC Press, Boca Raton, pp 2–22

    Google Scholar 

  20. Spencer T, McDonald TT (1990) The ontogeny of the immune system of the gut. CRC Press, Boca Raton, pp 23–50

    Google Scholar 

  21. Buchmiller TL, Shaw KS, Lam ML, Stokes R, Diamond JS, Fonkalsrud EW (1994) Effect of prenatal dexamethasone administration: fetal rabbit intestinal nutrient uptake and disaccharidase development. J Surg Res 57:274–279

    Article  CAS  PubMed  Google Scholar 

  22. Bauer CR, Morrison JC, Poole WK, Korones SB, Boehm JJ, Rigatto H, Zachman RD (1984) A decreased incidence of necrotizing enterocolitis after prenatal glucocorticoid therapy. Pediatrics 73:682–688

    CAS  PubMed  Google Scholar 

  23. Crowley P, Chalmers I, Keirse MJ (1990) The effects of corticosteroid administration before preterm delivery: An overview of the evidence from controlled trials. Br J Obstet Gynaecol 97:11–25

    Article  CAS  PubMed  Google Scholar 

  24. Halac E, Halac J, Begue EF, Casanas JM et al (1990) Prenatal and postnatal corticosteroid therapy to prevent neonatal necrotizing enterocolitis: a controlled trial. J Pediatr 117:132–138

    Article  CAS  PubMed  Google Scholar 

  25. Roberts D, Dalziel S (2007) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database of Syst Rev 4:CD004454. doi: 10.1002/14651858.CD004454.pub2

    Google Scholar 

  26. ACOG Committee on Obstetric P (2011) ACOG committee opinion no. 475: antenatal corticosteroid therapy for fetal maturation. Obstet Gynecol 117:422

    Article  Google Scholar 

  27. Carlo WA, McDonald SA, Fanaroff AA et al (2011) Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Association of antenatal corticosteroids with mortality and neurodevelopmental outcomes among infants born at 22–25 weeks’ gestation. JAMA 306:2348–2358

    Article  CAS  PubMed  Google Scholar 

  28. Lucas A, Cole TJ (1990) Breast milk and neonatal necrotising enterocolitis. Lancet 336:1519–1523

    Article  CAS  PubMed  Google Scholar 

  29. Caplan MS, Amer M, Jilling T (2002) The role of human milk in necrotising enterocolitis. Adv Exp Med Biol 503:83–90

    Article  PubMed  Google Scholar 

  30. Hanson LA (1999) Human milk and host defence: immediate and long-term effects. Acta Paediatr 88:42–46

    Article  CAS  Google Scholar 

  31. Schanler RJ (2001) The use of human milk for premature infants. Pediatr Clin North Am 48:207–219

    Article  CAS  PubMed  Google Scholar 

  32. Goldman AS (2000) Modulation of the gastrointestinal tract of infants by human milk. Interfaces and interactions. An evolutionary perspective J Nutr 130:426S–431S

    CAS  Google Scholar 

  33. Caplan M, Hsueh W, Kelly A, Donovan M (1990) Serum PAF acetylhydrolase increases during neonatal maturation. Prostaglandins 39:705–714

    CAS  PubMed  Google Scholar 

  34. Rabinowitz SS, Dzakpasu P, Piecuch S, Leblanc P, Valencia G, Kornecki E (2001) Platelet-activating factor in infants at risk for necrotizing enterocolitis. J Pediatr 138:81–86

    Article  CAS  PubMed  Google Scholar 

  35. Caplan MS, Sun XM, Hseuh W, Hageman JR (1990) Role of platelet activating factor and tumor necrosis factor-alpha in neonatal necrotizing enterocolitis. J Pediatr 116:960–964

    Article  CAS  PubMed  Google Scholar 

  36. Amer MD, Hedlund E, Rochester J, Caplan MS (2004) Platelet activating factor concentration in the stool of human newborns: effects of enteral feeding and neonatal necrotizing enterocolitis. Biol Neonate 85:159–166

    Article  CAS  PubMed  Google Scholar 

  37. Furukawa M, Narahara H, Yasuda K, Johnston JM (1993) Presence of platelet-activating factor-acetylhydrolase in milk. J Lipid Res 34:1603–1609

    CAS  PubMed  Google Scholar 

  38. Akisu M, Kultursay N, Ozkayin N, Coker I, Huseyinov A (1998) Platelet-activating factor levels in term and preterm human milk. Biol Neonate 74:289–293

    Article  CAS  PubMed  Google Scholar 

  39. Bunton GL, Durbin GM, McIntosh N et al (1977) Necrotizing enterocolitis. Controlled study of 3 years’ experience in a neonatal intensive care unit. Arch Dis Child 52:772–777

    Article  CAS  PubMed  Google Scholar 

  40. Dvorak B, Halpern MD, Holubec H et al (2003) Maternal milk reduces severity of necrotizing enterocolitis and increases intestinal IL-10 in a neonatal rat model. Pediatr Res 53:426–433

    Article  CAS  PubMed  Google Scholar 

  41. McGuire W, Anthony MY (2003) Donor human milk versus formula for preventing necrotising enterocolitis in preterm infants: systematic review. Arch Dis Child Fetal Neonatal Ed 88:F11–F14

    Article  CAS  PubMed  Google Scholar 

  42. Boyd CA, Quigley MA, Brocklehurst P (2007) Donor breast milk versus infant formula for preterm infants: systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 92:F169–F175

    Article  PubMed  Google Scholar 

  43. Sullivan S, Schanler RJ, Kim JH, Patel AL, Trawöger R, Kiechl-Kohlendorfer U et al (2010) An exclusively human milk-based diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk and bovine milk-based products. J Pediatr 156:562–567.e1

    Article  CAS  PubMed  Google Scholar 

  44. Meinzen-Derr J, Poindexter B, Wrage L, Morrow AL, Stoll B, Donovan EF (2009) Role of human milk in extremely low birth weight infants’ risk of necrotizing enterocolitis or death. J Perinatol 29:57–62

    Article  CAS  PubMed  Google Scholar 

  45. Sisk PM, Lovelady CA, Dillard RG, Gruber KJ, O’Shea TM (2007) Early human milk feeding is associated with a lower risk of necrotizing enterocolitis in very low birth weight infants. J Perinatol 27:428–433

    Article  CAS  PubMed  Google Scholar 

  46. Sisk PM, Lovelady CA, Gruber KJ, Dillard RG, O’Shea TM (2008) Human milk consumption and full enteral feeding among infants who weigh ≤ 1,250 g. Pediatrics 121:e1528–e1533

    Article  PubMed  Google Scholar 

  47. Castellote C, Casillas R, Ramírez-Santana C et al (2011) Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J. Nutr. 141(6):1181–1187

    Google Scholar 

  48. Emami CN, Chokshi N, Wang J et al (2012) Role of interleukin-10 in the pathogenesis of necrotizing enterocolitis. Am J Surg 203:428–435

    Article  CAS  PubMed  Google Scholar 

  49. Mihatsch WA, Ho¨ gel J, Pohlandt F (2001) Hydrolyzed protein accelerates the gastro-intestinal transport of formula in preterm infants. Acta Paediatr 90:196–198

    Article  CAS  PubMed  Google Scholar 

  50. Mihatsch WA, Franz AR, Hogel J, Pohlandt F (2002) Hydrolyzed protein accelerates feeding advancement in very low birth weight infants. Pediatrics 110:1199–1203

    Article  PubMed  Google Scholar 

  51. Riezzo G, Indrio F, Montagna O et al (2001) Gastric electrical activity and gastric emptying in preterm newborns fed standard and hydrolysed formulas. J Pediatr Gastroenterol Nutr 33:290–295

    Article  CAS  PubMed  Google Scholar 

  52. Maggio L, Zuppa AA, Sawatski G, Valsasina R, Schubert W, Tortorolo G (2005) Higher urinary excretion of essential amino acids in preterm infants fed protein hydrolysates. Acta Paediatr 94:75–84

    Article  CAS  PubMed  Google Scholar 

  53. Auricchio S, Rubino A, Muerset G (1965) Intestinal glycosidase activities in the human embryo, fetus, and newborn. Pediatrics 35:944–954

    CAS  PubMed  Google Scholar 

  54. Antonowicz I, Chang SK, Grand RJ (1974) Development and distribution of lysosomal enzymes and disaccharidases in human fetal intestine. Gastroenterol 67:51–58

    CAS  Google Scholar 

  55. Raul F, Lacroix B, Aprahamian M (1986) Longitudinal distribution of brush border hydrolases and morphological maturation in the intestine of the preterm infant. Early Hum Dev 13:225–234

    Article  CAS  PubMed  Google Scholar 

  56. Levine GN, Deren JJ, Steiger E, Zinno R (1974) Role of oral intake in maintenance of gut mass and disaccharidase activity. Gastroenterol 67:975–982

    CAS  Google Scholar 

  57. Hughes CA, Dowling RH (1980) Speed of onset of adaptive mucosal hypoplasia and hypofunction in the intestine of parenterally fed rats. Clin Sci 59:317–327

    CAS  PubMed  Google Scholar 

  58. Neu J, Koldovsky O (1996) Nutrient absorption in the preterm neonate. Clin Perinatol 23:229–243

    CAS  PubMed  Google Scholar 

  59. Shulman RJ, Schanler RJ, Lau C et al (1998) Early feeding, feeding tolerance, and lactase activity in preterm infants. J Pediatr 133:645–649

    Article  CAS  PubMed  Google Scholar 

  60. Hamosh M (1996) Digestion in the newborn. In: Neu J (ed) Neonatal Gastroenterology. PA: WB Saunders, Philadelphia, pp 191–210

    Google Scholar 

  61. Kien CL (1996) Digestion, absorption, and fermentation of carbohydrates in the newborn. Clin Perinatol 23:211–228

    CAS  PubMed  Google Scholar 

  62. Erasmus HD, Ludwig-Auser HM, Paterson PG, Sun D, Sankaran K (2002) Enhanced weight gain in preterm infants receiving lactase-treated feeds: a randomized, double-blind, controlled trial. J Pediatr 141:532–537

    Article  PubMed  Google Scholar 

  63. Griffin MP, Hansen JW (1999) Can the elimination of lactose from formula improve feeding tolerance in premature infants? J Pediatr 135:587–592

    Article  CAS  PubMed  Google Scholar 

  64. McClure RJ (2001) Trophic feeding of the preterm infant. Acta Paediatr Suppl 90:19–21

    Article  CAS  Google Scholar 

  65. Bombell S, McGuire W (2009) Early trophic feeding for very low birth weight infants. Cochrane Database Syst Rev 3:CD000504

    PubMed  Google Scholar 

  66. Premji SS, Chessell L (2011) Continuous nasogastric milk feeding versus intermittent bolus milk feeding for premature infants less than 1,500 g. Cochrane Database Syst Rev 11:CD001819

    PubMed  Google Scholar 

  67. Grant J, Denne SC (1991) Effect of intermittent versus continuous enteral feeding on energy expenditure in premature infants. J Pediatr 118:928–932

    Article  CAS  PubMed  Google Scholar 

  68. McGuire W, McEwan P (2007) Transpyloric versus gastric tube feeding for preterm infants. Cochrane Database Syst Rev 3:CD003487

    PubMed  Google Scholar 

  69. Morgan J, Young L, McGuire W (2011) Delayed introduction of progressive enteral feeds to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev 3:CD001970

    PubMed  Google Scholar 

  70. Morgan J, Young L, McGuire W (2011) Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev 3:CD001241

    PubMed  Google Scholar 

  71. Victor YH (1975) Effect of body position on gastric emptying in the neonate. Arch Dis Child 50:500–504

    Article  CAS  PubMed  Google Scholar 

  72. Villanueva-Meyer J, Swischuk LE, Cesani F, Ali SA, Briscoe E (1996) Pediatric gastric emptying: Value of right lateral and upright positioning. J Nucl Med 37:1356–1358

    CAS  PubMed  Google Scholar 

  73. Malhotra AK, Deorari AK, Paul VK, Bagga A, Singh M (1992) Gastric residuals in preterm babies. J Trop Pediatr 38:262–264

    Article  CAS  PubMed  Google Scholar 

  74. Blumenthal I, Pildes RS (1979) Effect of posture on the pattern of stomach emptying in the newborn. Pediatrics 63:532–536

    CAS  PubMed  Google Scholar 

  75. Cohen S, Mandel D, Mimouni FB, Solovkin L, Dollberg S (2004) Gastric residual in growing preterm infants: effect of body position. Am J Perinatol 21:163–166

    Article  PubMed  Google Scholar 

  76. van Wijk MP, Benninga MA, Dent J et al (2007) Effect of body position changes on postprandial gastroesophageal reflux and gastric emptying in the healthy premature neonate. J Pediatr 151:585–590

    Article  PubMed  Google Scholar 

  77. Anderson CA, Berseth CL (1996) Neither motor responses nor gastric emptying vary in response to formula temperature in preterm infants. Biol Neonate 70:265–270

    Article  CAS  PubMed  Google Scholar 

  78. Gonzales I, Duryea EJ, Vasquez E, Geraghty N (1995) Effect of enteral feeding temperature on feeding tolerance in preterm infants. Neonatal Netw 14:39–43

    CAS  PubMed  Google Scholar 

  79. Eckburg JJ, Bell EF, Rios GR, Wilmoth PK (1987) Effects of formula temperature on postprandial thermogenesis and body temperature of premature infants. J Pediatr 111:588–592

    Article  CAS  PubMed  Google Scholar 

  80. Costalos C, Ross I, Campbell AG, Sofi M (1979) Is it necessary to warm infants’ feeds? Arch Dis Child 54:899–901

    Article  CAS  PubMed  Google Scholar 

  81. Blumenthal I, Lealman GT, Shoesmith DR (1980) Effect of feed temperature and phototherapy on gastric emptying in the neonate. Arch Dis Child 55:562–564

    Article  CAS  PubMed  Google Scholar 

  82. Vantrappen G, Janssens J, Hellemans J, Ghoos Y (1977) The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. J Clin Invest 59:1158–1166

    Article  CAS  PubMed  Google Scholar 

  83. Morris FH Jr, Moore M, Gibson T, West MS (1990) Motility of the small intestine in preterm infants who later have necrotizing enterocolitis. J Pediatr 117:S20–S23

    Article  Google Scholar 

  84. Patole SK, Muller R (2004) Enteral feeding of preterm neonates—a survey of Australian neonatologists. J Maternal Fetal Neonatal Med 16:309–314

    Article  CAS  Google Scholar 

  85. Patole S, Rao S, Doherty D (2005) Erythromycin as a prokinetic agent in preterm neonates: a systematic review. Arch Dis Child Fetal Neonatal Ed 90:F301–F306

    Article  CAS  PubMed  Google Scholar 

  86. Lam HS, Ng PC (2011) Use of prokinetics in the preterm infant. Curr Opin Pediatr 23:156–160

    Article  CAS  PubMed  Google Scholar 

  87. Ng PC (2011) Erythromycin as a prokinetic agent in newborns—useful or doubtful? Neonatology 100:297–298

    Article  PubMed  Google Scholar 

  88. Laker MF, Menzies IS (1977) Increase in human intestinal permeability following ingestion of hypertonic solutions. J Physiol (Lond) 265:881–894

    CAS  PubMed  Google Scholar 

  89. De Lemos RA, Rogers JH Jr, McLaughlin W (1974) Experimental production of necrotising enterocolitis in newborn goats. Pediatr Res 8:380A

    Google Scholar 

  90. Williams AF (1997) Role of feeding in necrotizing enterocolitis. Semin Neonatol 2:263–271

    Article  Google Scholar 

  91. Radmacher PG, Adamkin MD, Lewis ST, Adamkin DH (2012) Milk as a vehicle for oral medications: hidden osmoles. J Perinatol 32:227–229

    Article  CAS  PubMed  Google Scholar 

  92. Agarwal R, Singal A, Aggarwal R, Deorari AK, Paul VK (2004) Effect of fortification with human milk fortifier (HMF) and other fortifying agents on the osmolality of preterm breast milk. Indian Pediatr 41:63–67

    PubMed  Google Scholar 

  93. McClure RJ, Newell SJ (1996) Effect of fortifying breast milk on gastric emptying. Arch Dis Child Fetal Neonatal Ed 74:F60–F62

    Article  CAS  PubMed  Google Scholar 

  94. Ewer AK, Yu VY (1996) Gastric emptying in pre-term infants: the effect of breast milk fortifier. Acta Paediatr 85:1112–1115

    Article  CAS  PubMed  Google Scholar 

  95. Moody GJ, Schanler RJ, Lau C, Shulman RJ (2000) Feeding tolerance in premature infants fed fortified human milk. J Pediatr Gastroenterol Nutr 30:408–412

    Article  CAS  PubMed  Google Scholar 

  96. Yigit S, Akgoz A, Memisoglu A, Akata D, Ziegler EE (2008) Breast milk fortification: effect on gastric emptying. J Matern Fetal Neonatal Med 21:843–846

    Article  PubMed  Google Scholar 

  97. Mallett AK, Wise A, Rowland IR (1984) Hydrocolloid food additives and rat caecal microbial enzyme activities. Food Chem Toxicol 22:415–418

    Article  CAS  PubMed  Google Scholar 

  98. Mercier JC, Hartmann JF, Cohen R et al (1984) Intestinal occlusion and enterocolitis caused by Gelopectose. Arch Fr Pediatr 41:709–710

    CAS  PubMed  Google Scholar 

  99. Clarke P, Robinson MJ (2004) Thickening milk feeds may cause necrotising enterocolitis. Arch Dis Child Fetal Neonatal Ed 89:F280

    Article  CAS  PubMed  Google Scholar 

  100. Beal J, Silverman B, Bellant J, Young TE, Klontz K (2012) Late onset necrotizing enterocolitis in infants following use of a xanthan gum-containing thickening agent. J Pediatr (Epub ahead of print)

    Google Scholar 

  101. Gounaris A, Kokori P, Varchalama L et al (2004) Theophylline and gastric emptying in very low birthweight neonates: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed 89:F297–F299

    Article  CAS  PubMed  Google Scholar 

  102. Bonthala S, Sparks JW, Musgrove KH, Berseth CL (2000) Mydriatics slow gastric emptying in preterm infants. J Pediatr 137:327–330

    Article  CAS  PubMed  Google Scholar 

  103. Nair AK, Pai MG, da Costa DE, Khusaiby SM (2000) Necrotising enterocolitis following ophthalmological examination in preterm neonates. Indian Pediatr 37:417–421

    CAS  PubMed  Google Scholar 

  104. Hufnal-Miller CA, Blackmon L, Baumgart S, Pereira GR (1993) Enteral theophylline and necrotizing enterocolitis in the low-birthweight infant. Clin Pediatr (Phila) 32:647–653

    Article  CAS  Google Scholar 

  105. Soraisham AS, Elliott D, Amin H (2008) Effect of single loading dose of intravenous caffeine infusion on superior mesenteric artery blood flow velocities in preterm infants. J Paediatr Child Health 44:119–121

    Article  PubMed  Google Scholar 

  106. Murphy DB, Sutton JA, Prescott LF, Murphy MB (1997) Opioid-induced delay in gastric emptying: a peripheral mechanism in humans. Anesthesiology 87:765–770

    Article  CAS  PubMed  Google Scholar 

  107. Sanders KM (1984) Role of prostaglandins in regulating gastric motility. Am J Physiol 247:G117–G126

    CAS  PubMed  Google Scholar 

  108. Corak A, Coskun T, Alican I, Kurtel H, Yegen BC (1997) The effect of nitric oxide synthase blockade and indomethacin on gastric emptying and gastric contractility. Pharmacology 54:298–304

    Article  CAS  PubMed  Google Scholar 

  109. Bellander M, Ley D, Polberger S, Hellstrom-Westas L (2003) Tolerance to early human milk feeding is not compromised by indomethacin in preterm infants with persistent ductus arteriosus. Acta Paediatr 92:1074–1078

    Article  CAS  PubMed  Google Scholar 

  110. Shorter NA, Liu JY, Mooney DP, Harmon BJ (1999) Indomethacin-associated bowel perforations: a study of possible risk factors. J Pediatr Surg 34:442–444

    Article  CAS  PubMed  Google Scholar 

  111. Fujii AM, Brown E, Mirochnick M, O’Brien S, Kaufman G (2002) Neonatal necrotizing enterocolitis with intestinal perforation in extremely premature infants receiving early indomethacin treatment for patent ductus arteriosus. J Perinatol 22:535–540

    Article  PubMed  Google Scholar 

  112. Gordon P, Rutledge J, Sawin R, Thomas S, Woodrum D (1999) Early postnatal dexamethasone increases the risk of focal small bowel perforation in extremely low birth weight infants. J Perinatol 19:573–577

    Article  CAS  PubMed  Google Scholar 

  113. Gordon PV, Marshall DD, Stiles AD, Price WA (2001) The clinical, morphologic, and molecular changes in the ileum associated with early postnatal dexamethasone administration: from the baby’s bowel to the researcher’s bench. Mol Genet Metab 72:91–103

    Article  CAS  PubMed  Google Scholar 

  114. Novack CM, Waffarn F, Sills JH, Pousti TJ, Warden MJ, Cunningham MD (1994) Focal intestinal perforation in the extremely-low-birth-weight infant. J Perinatol 14:450–453

    CAS  PubMed  Google Scholar 

  115. Malagelada JR, Camilleri M, Stanghellini V (1986) Manometric diagnosis of gastrointestinal motility disorders. Thieme, New York

    Google Scholar 

  116. Koenig WJ, Amarnath RP, Hench V, Berseth CL (1995) Manometrics for preterm and term infants: a new tool for old questions. Pediatrics 95:203–206

    CAS  PubMed  Google Scholar 

  117. Berseth CL (1999) Assessment in intestinal motility as a guide in the feeding management of the newborn. Clin Perinatol 26:1007–1015

    CAS  PubMed  Google Scholar 

  118. Ittmann PI, Amarnath R, Berseth CL (1992) Maturation of antroduodenal motor activity in preterm and term infants. Dig Dis Sci 37:14–19

    Article  CAS  PubMed  Google Scholar 

  119. de Ville K, Knapp E, Al-Tawil Y, Berseth CL (1998) Slow infusion feedings enhance duodenal motor responses and gastric emptying in preterm infants. Am J Clin Nutr 68:103–108

    PubMed  Google Scholar 

  120. Berseth CL, Ittmann PI (1992) Antral and duodenal motor responses to duodenal feeding in preterm and term infants. J Pediatr Gastroenterol Nutr 14:182–186

    Article  CAS  PubMed  Google Scholar 

  121. Berseth CL, Nordyke CK (1992) Manometry can predict feeding readiness in preterm infants. Gastroenterol 103:1523–1528

    CAS  Google Scholar 

  122. Berseth CL (1990) Neonatal small intestinal motility: motor responses to feeding in term and preterm infants. J Pediatr 117:777–782

    Article  CAS  PubMed  Google Scholar 

  123. Berseth CL (1989) Gestational evolution of small intestine motility in preterm and term infants. J Pediatr 115:646–651

    Article  CAS  PubMed  Google Scholar 

  124. Fang S, Kempley ST, Gamsu HR (2001) Prediction of early tolerance to enteral feeding in preterm infants by measurement of superior mesenteric artery blood flow velocity. Arch Dis Child Fetal Neonatal Ed 85:F42–F45

    Article  CAS  PubMed  Google Scholar 

  125. Pezzati M, Dani C, Tronchin M, Filippi L, Rossi S, Rubaltelli FF (2004) Prediction of early tolerance to enteral feeding by measurement of superior mesenteric artery blood flow velocity: appropriate- versus small-for-gestational-age preterm infants. Acta Paediatr 93:797–802

    Article  CAS  PubMed  Google Scholar 

  126. Bora R, Mukhopadhyay K, Saxena AK, Jain V, Narang A (2009) Prediction of feed intolerance and necrotizing enterocolitis in neonates with absent end diastolic flow in umbilical artery and the correlation of feed intolerance with postnatal superior mesenteric artery flow. J Matern Fetal Neonatal Med 22:1092–1096

    Article  CAS  PubMed  Google Scholar 

  127. Murdoch EM, Sinha AK, Shanmugalingam ST, Smith GC, Kempley ST (2006) Doppler flow velocimetry in the superior mesenteric artery on the first day of life in preterm infants and the risk of neonatal necrotizing enterocolitis. Pediatrics 118:1999–2003

    Article  PubMed  Google Scholar 

  128. Robel-Tillig E, Knüpfer M, Pulzer F, Vogtmann C (2004) Blood flow parameters of the superior mesenteric artery as an early predictor of intestinal dysmotility in preterm infants. Pediatr Radiol 34:958–962

    Article  PubMed  Google Scholar 

  129. Berseth CL (2003) Risk factors for delays in establishing full enteral feeding volume in preterm infants. Pediatr Res A2647

    Google Scholar 

  130. Patole S, McGlone L, Muller R (2003) Virtual elimination of necrotising enterocolitis for 5 years—reasons? Med Hypotheses 61:617–622

    Article  CAS  PubMed  Google Scholar 

  131. Patole SK, Muller R (2005) Does Carboxymethylcellulose have a role in reducing time to full enteral feeds in preterm neonates? Int J Clin Pract 59:544–548

    Article  CAS  PubMed  Google Scholar 

  132. Patole SK, Kumaran VS, Travadi JN, Brooks JM, Doherty DA (2007) Does patent ductus arteriosus affect feed tolerance in preterm neonates? Arch Dis Child Fetal Neonatal Ed 92:F53–F55

    Article  CAS  PubMed  Google Scholar 

  133. Jhaveri N, Soll RF, Clyman RI (2010) Feeding practices and patent ductus arteriosus ligation preferences-are they related? Am J Perinatol 27:667–674

    Article  PubMed  Google Scholar 

  134. Raghavan K, Thomas E, Patole SK, Muller R, Whitehall J (2001) Is phototherapy a risk factor for ileus in high-risk neonates? Pediatr Res A1855

    Google Scholar 

  135. Kadalraja R, Patole SK, Muller R, Whitehall JS (2004) Is mesenteric blood flow compromised during phototherapy in preterm neonates? Arch Dis Child Fetal Neonatal Ed 89:F564

    Article  CAS  PubMed  Google Scholar 

  136. Food and Agriculture Organization of the United Nations (FAO) (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Amerian Córdoba Park Hotel, Córdoba, Argentina. http://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf. Accessed 1–4 Oct 2001

  137. Bode L (2012) Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology (Epub ahead of print)

    Google Scholar 

  138. Jantscher-Krenn E, Bode L (2012) Human milk oligosaccharides and their potential benefits for the breast-fed neonate. Minerva Pediatr 64:83–99

    CAS  PubMed  Google Scholar 

  139. Deshpande G, Rao S, Patole S (2007) Probiotics for prevention of necrotising enterocolitis in preterm neonates. Lancet 369:1614–1620

    Article  PubMed  Google Scholar 

  140. Deshpande G, Rao S, Patole S, Bulsara M (2010) Updated meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Pediatrics 125:921–930

    Article  PubMed  Google Scholar 

  141. Guthmann F, Kluthe C, Bührer C (2010) Probiotics for prevention of necrotising enterocolitis: an updated meta-analysis. Klin Pediatr 222:284–290

    Article  CAS  Google Scholar 

  142. Alfaleh K, Anabrees J, Bassler D, Al-Kharfi T (2011) Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev 3:CD005496

    PubMed  Google Scholar 

  143. Wang Q, Dong J, Zhu Y (2012) Probiotic supplement reduces risk of necrotizing enterocolitis and mortality in preterm very low-birth-weight infants: an updated meta-analysis. J Pediatr Surg 47:241–248

    Article  PubMed  Google Scholar 

  144. Pirie S, Patole S. (2012) Probiotics for the prevention of necrotising enterocolitis in preterm neonates. In: Ohls RK, Maheshwari A, (eds) Hematology, immunology and infectious disease. Neonatology questions and controversies. 2nd edn. Elsevier Saunders, New York, 237–252.

    Google Scholar 

  145. Indrio F, Riezzo G, Raimondi F, Bisceglia M, Cavallo L, Francavilla R (2008) The effects of probiotics on feeding tolerance, bowel habits, and gastrointestinal motility in preterm newborns. J Pediatr 152:801–806

    Article  PubMed  Google Scholar 

  146. Indrio F, Riezzo G, Raimondi F, Francavilla R, Montagna O, Valenzano ML, Cavallo L, Boehm G (2009) Prebiotics improve gastric motility and gastric electrical activity in preterm newborns. J Pediatr Gastroenterol Nutr 49:258–261

    Article  PubMed  Google Scholar 

  147. Indrio F, Riezzo G, Raimondi F, Bisceglia M, Cavallo L, Francavilla R (2009) Effects of probiotic and prebiotic on gastrointestinal motility in newborns. J Physiol Pharmacol 60:27–31

    PubMed  Google Scholar 

  148. Indrio F, Riezzo G, Raimondi F, Bisceglia M, Filannino A, Cavallo L, Francavilla R (2011) Lactobacillus reuteri accelerates gastric emptying and improves regurgitation in infants. Eur J Clin Invest 41:417–422

    Article  PubMed  Google Scholar 

  149. Srinivasjois R, Rao S, Patole S (2009) Prebiotic supplementation of formula in preterm neonates: a systematic review and meta-analysis of randomised controlled trials. Clin Nutr 28:237–242

    Article  CAS  PubMed  Google Scholar 

  150. Westerbeek EA, Hensgens RL, Mihatsch WA, Boehm G, Lafeber HN, van Elburg RM (2011) The effect of neutral and acidic oligosaccharides on stool viscosity, stool frequency and stool pH in preterm infants. Acta Paediatr 100:1426–1431

    Google Scholar 

  151. Westerbeek EA, van den Berg JP, Lafeber HN, Fetter WP, Boehm G, Twisk JW, van Elburg RM (2010) Neutral and acidic oligosaccharides in preterm infants: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr 91:679–686

    Article  CAS  PubMed  Google Scholar 

  152. Mihatsch WA, Hoegel J, Pohlandt F (2006) Prebiotic oligosaccharides reduce stool viscosity and accelerate gastrointestinal transport in preterm infants. Acta Paediatr 95:843–848

    Article  PubMed  Google Scholar 

  153. Modi N, Uthaya S, Fell J, Kulinskaya E (2010) A randomized, double-blind, controlled trial of the effect of prebiotic oligosaccharides on enteral tolerance in preterm infants (ISRCTN77444690). Pediatr Res 68:440–445

    CAS  PubMed  Google Scholar 

  154. Riskin A, Hochwald O, Bader D et al (2010) The effects of lactulose supplementation to enteral feedings in premature infants: a pilot study. J Pediatr 156:209–214

    Article  CAS  PubMed  Google Scholar 

  155. Patole S (2005) Strategies for prevention of feed intolerance in preterm neonates: a systematic review. J Matern Fetal Neonatal Med 18:67–76

    Article  PubMed  Google Scholar 

  156. Tyson JE, Kennedy KA, Lucke JF, Pedroza C (2007) Dilemmas initiating enteral feedings in high risk infants: how can they be resolved? Semin Perinatol 31:61–73

    Article  PubMed  Google Scholar 

  157. Khadr SN, Ibhanesebhor SE, Rennix C, Fisher HE, Manjunatha CM, Young D, Abara RC (2011) Randomized controlled trial: impact of glycerin suppositories on time to full feeds in preterm infants. Neonatol 100:169–176

    Article  CAS  Google Scholar 

  158. Shim SY, Kim HS, Kim DH, Kim EK, Son DW, Kim BI, Choi JH (2007) Induction of early meconium evacuation promotes feeding tolerance in very low birth weight infants. Neonatol 92:67–72

    Article  Google Scholar 

  159. Hales CN (1997) Metabolic consequences of intrauterine growth retardation. Acta Paediatr Suppl 423:184–187; discussion 188

    Google Scholar 

  160. Hack M, Schluchter M, Cartar L, Rahman M, Cuttler L, Borawski E (2003) Growth of very low birth weight infants to age 20 years. Pediatrics 112:e30–e38

    Article  PubMed  Google Scholar 

  161. Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB (2000) Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ 320:967–971 (Erratum in: BMJ 320:1244)

    Google Scholar 

  162. Hales CN, Ozanne SE (2003) The dangerous road of catch-up growth. J Physiol 15:5–10

    Article  CAS  Google Scholar 

  163. Ozanne SE, Hales CN (2004) Lifespan: catch-up growth and obesity in male mice. Nature 427:411–412

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Patole MD, DCH, FRACP, MSc, DrPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Patole, S. (2013). Strategies for Managing Feed Intolerance in Preterm Neonates. In: Patole, S. (eds) Nutrition for the Preterm Neonate. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6812-3_3

Download citation

Publish with us

Policies and ethics