Skip to main content

Coupling Landscape Patterns and Ecological Processes

  • Chapter
  • First Online:
Landscape Ecology for Sustainable Environment and Culture

Abstract

The relationship between landscape patterns and ecological processes lays the foundation of landscape ecology, and understanding the relationship between them is key to further promoting the study of landscape ecology. This chapter addresses the importance of coupling research on the relationships between landscape patterns and ecological processes. Direct measurement and model simulation are the two basic approaches. Being robust in tapping the in situ measurement data and integrating them with multiple spatial and temporal scale data, ecological models have gradually taken the lead in landscape ecological research. This chapter discusses methodology in analyzing driving, feedback, and coupling relationships between landscape patterns and ecological processes, and explores a 7-step coupling framework on landscape patterns and ecological processes. In particular, the links between landscape patterns and soil erosion processes are addressed at patch, slope, and watershed scales. Finally, we look into the future of the coupling research on landscape patterns and ecological processes as: (1) developing landscape pattern indices reflecting ecological processes; (2) exploring the scale dependence of the relationship between landscape patterns and ecological processes; (3) integrating landscape modeling with long-term ecological research; and (4) strengthening research on the effects of ecological processes on landscape patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaviksoo K. Simulating vegetation dynamics and land use in a mire landscape using a Markov model. Landscape Urban Plann. 1995;31(1/3):129–42.

    Article  Google Scholar 

  • Alcamo J, Leemans R, Kreileman E. Global change scenarios of the 21st century: Results from the IMAGE 2.1 model. London: Pergamon & Elsevier Science; 1998. p. 296.

    Google Scholar 

  • Bakker MM, Govers G, Kosmas C, Vanacker V, van Oost K. Rounsevell M. Soil erosion as a driver of land-use change. Agric Ecosyst Environ. 2005;105(3):467–81.

    Article  Google Scholar 

  • Beasley DB, Huggins LF, Monke EJ. ANSWERS: a model for watershed planning. Trans ASAE. 1980;23(4):938–44.

    Article  Google Scholar 

  • Bergen KM, Dobson MC. Integration of remotely sensed radar imagery in modeling and mapping of forest biomass and net primary production. Ecol Model. 1999;122(3):257–74.

    Article  Google Scholar 

  • Berggren A, Carlson A, Kindvall O. The effect of landscape composition on colonization success, growth rate and dispersal in introduced bush-crickets Metrioptera roeseli. J Anim Ecol. 2001;70(4):663–70.

    Article  Google Scholar 

  • Billen N, Röder C, Gaiser T, Stahr K. Carbon sequestration in soils of SW-Germany as affected by agricultural management-Calibration of the EPIC model for regional simulations. Ecol Model. 2009;220(1):71–80.

    Article  Google Scholar 

  • Binder C, Boumans RM, Costanza R. Applying the Patuxent Landscape Unit Model to human dominated ecosystems: the case of agriculture. Ecol Model. 2003;159(2–3):161–77.

    Article  Google Scholar 

  • Bithell M, Brasington J. Coupling agent-based models of subsistence farming with individual based forest models and dynamic models of water distribution. Environ Model Softw. 2009;24(2):173–90.

    Article  Google Scholar 

  • Bleher B, Oberrath R, Bhning-Gaese K. Seed dispersal, breeding system, tree density and the spatial pattern of trees a simulation approach. Basic Appl Ecol. 2002;3(2):115–23.

    Article  Google Scholar 

  • Boix-Fayos C, de Vente J, Albaladejo J, Martínez-Mena M. Soil carbon erosion and stock as affected by land use changes at the catchment scale in Mediterranean ecosystems. Agric Ecosyst Environ. 2009;133(1–2):75–85.

    Article  Google Scholar 

  • Brath A, Montanari A, Moretti G. Assessing the effect on flood frequency of land use change via hydrological simulation (with uncertainty). J Hydrol. 2006;324(1–4):141–53.

    Article  Google Scholar 

  • Bucur D, Jitareanu G, Ailincai C, Tsadilas C, Ailincai D, Mercus A. Influence of soil erosion on water, soil, humus and nutrient losses in different crop systems in the Moldavian Plateau, Romania. J Food Agric Environ. 2007;5(2):261–4.

    CAS  Google Scholar 

  • Caldwell IM, Maclaren VM, Chen JM, Ju WM, Zhou S, Yin Y, Boland A. An integrated assessment model of carbon sequestration benefits: a case study of Liping County China. J Environ Manage. 2007;85(3):757–73.

    Article  CAS  PubMed  Google Scholar 

  • Carlisle DM, Wolock DM, Meador MR. Alteration of streamflow magnitudes and potential ecological consequences: a multiregional assessment. Front Ecol Environ. 2011;9(5):264–70.

    Article  Google Scholar 

  • Chen H, Shao M. Review on hillslope soil water movement and transformation mechanism on the Loess Plateau. Adv Water Sci. 2003;14(4):513–20 (in Chinese).

    Google Scholar 

  • Chen L, Liu Y, Lv Y, Feng X, Fu B. Landscape pattern analysis in landscape ecology: current, challenges and future. Acta Ecologica Sinica. 2008;28(11):5521–31 (in Chinese).

    Article  Google Scholar 

  • Childress WM, Coldren CL, Mclendon T. Applying a complex, general ecosystem model (EDYS) in large-scale land management. Ecol Model. 2002;153(1/2):97–108.

    Article  Google Scholar 

  • Costanza R, Voinov A, Boumans R, Maxwell T, Villa F, Wainger L, Voinov H. Integrated ecological economic modeling of the Patuxent River watershed Maryland. Ecol Monogr. 2002;72(2):203–31.

    Article  Google Scholar 

  • Fortin M-J, Agrawal AA. Landscape ecology comes of age. Ecology. 2005;86(8):1965–6.

    Article  Google Scholar 

  • Franken RJ, Hik DS. Influence of habitat quality, patch size and connectivity on colonization and extinction dynamics of collared pikas Ochotona collaris. J Anim Ecol. 2004;73(5):889–96.

    Article  Google Scholar 

  • Fu BJ, Chen LD, Ma KM, Zhou HF, Wang J. The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi China. Catena. 2000;39(1):69–78.

    Article  Google Scholar 

  • Fu BJ, Chen LD, Ma KM, Wang YL. The principles and application on landscape ecology. Beijing: Science Press; 2001. p. 1–14 (in Chinese).

    Google Scholar 

  • Fu BJ, Wang YF, Lu YH, He CS, Chen LD, Song CJ. The effects of land-use combinations on soil erosion: a case study in the Loess Plateau of China. Prog Phys Geogr. 2009;33(6):793–804.

    Article  Google Scholar 

  • Girmay G, Singh BR, Nyssen J, Borrosen T. Runoff and sediment-associated nutrient losses under different land uses in Tigray, Northern Ethiopia. J Hydrol. 2009;376(1–2):70–80.

    Article  CAS  Google Scholar 

  • Gustafson EJ. Quantifying landscape spatial pattern: what is the state of the art? Ecosystems. 1998;1(2):143–56.

    Article  Google Scholar 

  • Haines-Young R, Chopping M. Quantifying landscape structure: a review of landscape indices and their application to forested landscapes. Prog Phys Geogr. 1996;20(4):418–45.

    Article  Google Scholar 

  • Hao W, Chen C, Liang Z, Ma L. Research advances in vegetation biomass. J Northwest A & F Univ. 2008;36(2):175–82 (in Chinese).

    Google Scholar 

  • Hattermann FF, Krysanova V, Habeck A, Bronstert A. Integrating wetlands and riparian zones in river basin modelling. Ecol Model. 2006;199(4):379–92.

    Article  Google Scholar 

  • He HS, Mladenoff DJ, Crow TR. Linking an ecosystem model and a landscape model to study forest species response to climate warming. Ecol Model. 1999;114(2–3):213–33.

    Article  Google Scholar 

  • Herrick JE, Lessard VC, Spaeth KE, Shaver PL, Dayton RS, Pyke DA, Jolley L, Goebel JJ. National ecosystem assessments supported by scientific and local knowledge. Front Ecol Environ. 2010;8(8):403–8.

    Article  Google Scholar 

  • Hu L, Shao M. Vegetation coverage index in soil and water loss studies. J Northwest For Univ. 2001;16(1):40–3 (in Chinese).

    Google Scholar 

  • Huang Y, Chen L, Fu B, Wang Y. Spatial pattern of soil water and its influencing factors in a gully catchment of the Loess Plateau. J Nat Resour. 2005;20(4):483–92 (in Chinese).

    Google Scholar 

  • Huang Y, Fu B, Chen L. Advances in ecohydrological process research. Acta Ecologica Sinica. 2003;23(3):580–7 (in Chinese).

    Google Scholar 

  • Jackson CR, Meister R, Prudhomme C. Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections. J Hydrol. 2011;399(1–2):12–28.

    Article  Google Scholar 

  • Jeltsch F, Moloney K, Milton SJ. Detecting process from snapshot pattern: lessons from tree spacing in the southern Kalahari. Oikos. 1999;85(3):451–66.

    Article  Google Scholar 

  • Jiang D. Soil erosion and control models in the Loess Plateau. Beijing: China Waterpower Press; 1997. p. 198–206 (in Chinese).

    Google Scholar 

  • Jimenéz-Hornero FJ, Giráldez JV, Laguna AM, Jiménez-Hornero JE. An educational computer tool for simulating long-term soil erosion on agricultural landscapes. Comput Appl Eng Educ. 2009;17(3):253–62.

    Article  Google Scholar 

  • Jones KB, Zurlini G, Kienast F, Petrosillo I, Edwards T, Wade TG, Li BL, Zaccarelli N. 2012. Informing landscape planning and design for sustaining ecosystem services from existing spatial patterns and knowledge. Landscape Ecology. doi:10.1007/s10980-012-9794-4.

  • Keane RE, Karau E. Evaluating the ecological benefits of wildfire by integrating fire and ecosystem simulation models. Ecol Model. 2010;221(8):1162–72.

    Article  Google Scholar 

  • Kohlmeier C, Ebenhöh W. Modelling the ecosystem dynamics and nutrient cycling of the Spiekeroog back barrier system with a coupled Euler–Lagrange model on the base of ERSEM. Ecol Model. 2007;202(3–4):297–310.

    Article  Google Scholar 

  • Kong F, Li X, Yin H. The effect of fire intensity on the patterns of forest landscape in the north-slope of Da Hinggan Mountains. J Nanjing For Univ (Natural Sciences Edition). 2005;25(2):33–7 (in Chinese).

    CAS  Google Scholar 

  • Krysanova V, Müller-Wohlfeil DI, Becker A. Development and test of a spatially distributed hydrological: water quality model for mesoscale watersheds. Ecol Model. 1998;106(2–3):261–89.

    Article  CAS  Google Scholar 

  • Le Maitre DC, Milton SJ, Jarmain C, Colvin CA, Saayman I, Vlok JHJ. Linking ecosystem services and water resources: landscape-scale hydrology of the Little Karoo. Front Ecol Environ. 2007;5(5):261–70.

    Article  Google Scholar 

  • Li BL. Stability analysis of a nonhomogeneous Markovian landscape model. Ecol Model. 1995;82(3):247–56.

    Article  Google Scholar 

  • Li KY, Coe MT, Ramankutty N, De Jong R. Modeling the hydrological impact of land-use change in West Africa. J Hydrol. 2007;337(3–4):258–68.

    Article  Google Scholar 

  • Li Y, Zhu X, Tian J. Study on the effectiveness of soil anti-scourability by plant roots in Loess Plateau. Chin Sci Bull. 1991;36(12):935–8 (in Chinese).

    Google Scholar 

  • Ligtenberg A, Wachowicz M, Bregt AK, Beulens A, Kettenis DL. A design and application of a multi-agent system for simulation of multi-actor spatial planning. J Environ Manage. 2004;72(1/2):33–55.

    Google Scholar 

  • Liu SG, Bliss N, Sundquist E, Huntington TG. Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition. Global Biogeochem Cycles. 2003;17(2):24.

    Article  Google Scholar 

  • Liu X, Wu Q, Zhao H. The vertical interception function of forest vegetation and soil and water conservation. Res Soil Water Conserv. 1994;1(3):8–13 (in Chinese).

    CAS  Google Scholar 

  • Lü Y, Chen L, Fu B. Analysis of the integrating approach on landscape pattern and ecological processes. Prog Geogr. 2007;26(3):1–10 (in Chinese).

    Google Scholar 

  • Lu Y, Stocking M. Integrating biophysical and socio-economic aspects of soil conservation on the Loess Plateau, China. Part II. Productivity impact and economic costs of erosion. Land Degrad Dev. 2000;11(2):141–52.

    Article  Google Scholar 

  • Ludwig JA, Tongway DJ, Marsden SG. Stripes, strands or stipples: modelling the influence of three landscape banding patterns on resource capture and productivity in semi-arid woodlands, Australia. Catena. 1999;37(1–2):257–73.

    Article  Google Scholar 

  • Ludwig JA, Wilcox BP, Breshears DD, Tongway DJ, Imeson AC. Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology. 2005;86(2):288–97.

    Article  Google Scholar 

  • Matthews RB, Gilbert NG, Roach A, Polhill JG, Gotts NM. Agent-based land-use models: a review of applications. Landscape Ecol. 2007;22(10):1447–59.

    Article  Google Scholar 

  • McIvor JG, Williams J, Gardener CJ. Pasture management influences runoff and soil movement in the semiarid tropics. Aust J Exp Agric. 1995;35(1):55–65.

    Article  Google Scholar 

  • Mladenoff DJ, Host GE, Boeder J, Crow TR. LANDIS: a spaital model of forest landscape disturbance, succession, and management. In: Goodchild MF, Steyaert LT, Parks BO, editor. GIS and environmental modelling: progress and research issues. GIS World. 1996. p. 175--180.

    Google Scholar 

  • Niehoff D, Fritsch U, Bronstert A. Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. J Hydrol. 2002;267(1–2):80–93.

    Article  Google Scholar 

  • Noble JC, Greene RSB, Muller WJ. Herbage production following rainfall redistribution in a semi-arid mulga (Acacia Aneura) woodland in Western New South Wales. Rangeland J. 1998;20(2):206–25.

    Article  Google Scholar 

  • Odland JD. Spatial Autocorrelation. California: Sage Publications Inc.; 1988. p. 6–9.

    Google Scholar 

  • Paruelo JM, Pütz S, Weber G, Bertiller M, Golluscio RA, Aguiar MR, Wiegand T. Long-term dynamics of a semiarid grass steppe under stochastic climate and different grazing regimes: a simulation analysis. J Arid Environ. 2008;72(12):2211–31.

    Article  Google Scholar 

  • Reid KD, Wilcox BP, Breshears DD, MacDonald L. Runoff and erosion in a pinon-juniper woodland: influence of vegetation patches. Soil Sci Soc Am J. 1999;63(6):1869–79.

    Article  CAS  Google Scholar 

  • Roth CH, Prosser I, Post D, Gross J, Webb M, 2003. Reducing sediment and nutrient export from grazed land in the Burdekin Catchment for sustainable beef production. Final report to Meat and Livestock Australia, p. 133--143.

    Google Scholar 

  • Savary S, Rousseau AN, Quilbé R. Assessing the effects of historical land cover changes on runoff and low flows using remote sensing and hydrological modeling. J Hydrol Eng. 2009;14(6):575–87.

    Article  Google Scholar 

  • Scanlan JC, Pressland AJ, Myles DJ. Run-off and soil movement on mid-slopes in north-east Queensland [Australia] grazed woodlands. Rangeland J. 1996a;18(1):33–46.

    Article  Google Scholar 

  • Scanlan JC, Pressland AJ, Myles DJ. Grazing modifies woody and herbaceous components of North Queensland Woodlands. Rangeland J. 1996b;18(1):47–57.

    Article  Google Scholar 

  • Schaldach R, Alcamo J. Coupled simulation of regional land use change and soil carbon sequestration: a case study for the state of Hesse in Germany. Environ Model Softw. 2006;21(10):1430–46.

    Article  Google Scholar 

  • Schurr FM, Bossdorf O, Milton SJ, Schumacher J. Spatial pattern formation in semi-arid shrubland: a priori predicted versus observed pattern characteristics. Plant Ecol. 2004;173(2):271–82.

    Article  Google Scholar 

  • Sogn TA, Abrahamsen G. Simulating effects of S and N deposition on soil water chemistry by the nutrient cycling model NuCM. Ecol Model. 1997;99(2–3):101–11.

    Article  CAS  Google Scholar 

  • Sun G, Zuo CQ, Liu SY, Liu ML, McNulty SG, Vose M. Watershed evapotranspiration increased due to changes in vegetation composition and structure under a subtropical climate. J Am Water Resour Assoc. 2008;44(5):1164–75.

    Article  Google Scholar 

  • Syvitski JPM, Milliman JD. Geology, geography, and human’s battle for dominance over the delivery of fluvial sediment to the coastal ocean. J Geol. 2007;115(1):1–19.

    Article  Google Scholar 

  • Tobler WR. A computer movie simulating urban growth in the Detroit region. Econ Geogr. 1970;46(2):234–40.

    Article  Google Scholar 

  • Voinov A, Costanza R, Wainger L, Boumans R, Villa F, Maxwell T, Voinov H. Patuxent landscape model: integrated ecological economic modeling of a watershed. Environ Model Softw. 1999;14(5):473–91.

    Article  Google Scholar 

  • Wang H, Liu G, Wang Q. Effect of vegetation as whole in watershed on protecting soil from erosion and dissection of its landscape structure. J Soil Water Conserv. 2000;14(5):73–77, 97. (in Chinese).

    Google Scholar 

  • Wang G, Qian J, Cheng G. Current situation and prospect of the ecological hydrology. Adv Earth Sci. 2001;16(3):314–23 (in Chinese).

    Google Scholar 

  • Wang S, Zhang Z, Sun G, Zhang M, Yu X. Effects of land use change on hydrological dynamics at watershed scale in the Loess Plateau—A case study in the Luergou watershed, Gansu Province. J Beijing For Univ. 2006;28(1):48–54 (in Chinese).

    Google Scholar 

  • Wang L, Xu Y, Fu B, Lu Y. Landscape pattern and eco-hydrological process. Adv Earth Sci. 2009a;24(11):1238–46 (in Chinese).

    Google Scholar 

  • Wang Y, Fu B, Lü Y, Song J, Luan Y. Local-scale spatial variability of soil organic carbon and its stock in the hilly area of the Loess Plateau China. Quatern Res. 2009b;73(1):70–6.

    Article  Google Scholar 

  • Wei W, Chen LD, Fu BJ, Huang ZL, Wu DP, Gui LD. The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China. J Hydrol. 2007;335(3–4):247–58.

    Article  Google Scholar 

  • Wilcox BP, Breshears DD, Allen CD. Ecohydrology of a resource-conserving semiarid woodland: effects of scale and disturbance. Ecol Monogr. 2003;73(2):223–39.

    Article  Google Scholar 

  • Wolfram S. Cellular automata as models of complexity. Nature. 1984;311(5985):419–24.

    Article  Google Scholar 

  • Wu FL. Calibration of stochastic cellular automata: the application to rural urban land conversions. Int J Geog Inf Sci. 2002;16(8):795–818.

    Article  Google Scholar 

  • Wu J. Landscape ecology: pattern, process, scale and hierarchy. 2nd ed. Beijing: Higher Education Press; 2007. p. 1–23 (in Chinese).

    Google Scholar 

  • Wu J, David JL. A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications. Ecol Model. 2002;153(1/2):7–26.

    Article  Google Scholar 

  • Wu J, Hobbs R. Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landscape Ecol. 2002;17(4):355–65.

    Article  Google Scholar 

  • Xu X, Gao Q, Liu YH, Wang JA, Zhang Y. Coupling a land use model and an ecosystem model for a crop-pasture zone. Ecol Model. 2009;220(19):2503–11.

    Article  Google Scholar 

  • Xu Y, Fu B, Lü Y. Research on landscape pattern and ecological processes based on landscape models. Acta Ecologica Sinica. 2010;30(1):212–20 (in Chinese).

    Google Scholar 

  • Zhang J, Chu Z, Ge Y, Zhou X, Jiang H, Chang J, Peng C, Zheng J, Jiang B, Zhu J, Yu S. TRIPLEX model testing and application for predicting forest growth and biomass production in the subtropical forest zone of China’s Zhejiang Province. Ecol Model. 2008;219(3–4):264–75.

    Article  Google Scholar 

  • Zhang Z, Wang S, Sun G. Runoff and sediment yield response to vegetation change at multiple scales: a review. Acta Ecologica Sinica. 2006;26(7):2356–64 (in Chinese).

    Google Scholar 

  • Zonneveld IS. The land unit-a fundamental concept in landscape ecology, and its applications. Landscape Ecol. 1989;3(2):67–86.

    Article  Google Scholar 

  • Zornoza R, Mataix-Solera J, Guerrero C, Arcenegui V, Mayoral AM, Morales J, Mataix-Beneyto J. Soil properties under natural forest in the Alicante province of Spain. Geoderma. 2007;142(3–4):334–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the CAS/SAFEA International Partnership Program for Creative Research Teams of “Ecosystem Processes and Services”, National Basic Research (973) Program (No. 2009CB421104), and National Natural Science Foundation of China (40930528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojie Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fu, B., Su, C., Lü, Y. (2013). Coupling Landscape Patterns and Ecological Processes. In: Fu, B., Jones, K. (eds) Landscape Ecology for Sustainable Environment and Culture. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6530-6_1

Download citation

Publish with us

Policies and ethics