Skip to main content
Log in

The land unit — A fundamental concept in landscape ecology, and its applications

  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

The land unit, as an expression of landscape as a system, is a fundamental concept in landscape ecology. It is an ecologically homogeneous tract of land at the scale at issue. It provides a basis for studying topologic as well as chorologic landscape ecology relationships. A land unit survey aims at mapping such land units. This is done by simultaneously using characteristics of the most obvious (mappable) land attributes: land-form, soil and vegetation (including human alteration of these three). The land unit is the basis of the map legend but may be expressed via these three land attributes. The more dynamic land attributes, such as certain animal populations and water fluxes, are less suitable as diagnostic criteria, but often link units by characteristic information/energy fluxes.

The land unit survey is related to a further development of the widely accepted physiographic soil survey see Edelman (1950). Important aspects include: by means of a systems approach, the various land data can be integrated more appropriately; geomorphology, vegetation and soil science support each other during all stages (photo-interpretation, field survey, data processing, final classification); the time and costs are considerably less compared with the execution of separate surveys; the result is directly suitable as a basis for land evaluation; the results can be expressed in separate soil, vegetation, land use and landform maps, or even single value maps.

A land unit survey is therefore: a method for efficient survey of land attributes, such as soils, vegetation, landform, expressed in either separate or combined maps; a means of stimulating integration among separate land attribute sciences; an efficient basis for land evaluation. For multidisciplinary projects with applied ecologic aims (e.g., land management), it is therefore the most appropriate survey approach.

Within the land unit approach there is considerable freedom in the way in which the various land attribute data are ‘integrated’. It is essential, however, that: during the photo-interpretation stage, the contributions of the various specialists are brought together to prepare a preliminary (land unit) photo-interpretation map; the fieldwork data are collected at exactly the same sample point, preferably by a team of specialists in which soil, vegetation and geomorphology are represented; the final map is prepared in close cooperation of all contributing disciplines, based on photo-interpretation and field data; the final map approach may vary from one fully-integrated land unit map to various monothematic maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrade, A., Valenzuela, C.R. and de Vos tNC, J.H. 1988. tAn ILWIS application for land use planning in Llanos Orientales Colombia. ITC Journal 1988-1, pp. 109–115.

  • Banning, J.H., Leys, H.N. and Zonneveld, I.S. 1973. Vegetation, Habitat and Site Class in Dutch Conifer Forest. Bodemk Stud g, Sti-Bo-Ka, Wageningen, The Netherlands. 188 pp.

    Google Scholar 

  • Christian, C.S. and Stewart, G.A. 1964. Methodology of integrated surveys. Proc. Unesco conf. on principles and methods of integrated aerial surveys of natural resources for potential development, Toulouse 1964. WS/0384.15/NS. 146 pp.

  • Edelman, C.H. 1950. Soils of The Netherlands. NV Noordh. Uitg. My, Amsterdam. 178 pp.

    Google Scholar 

  • Etter-Rottisberger, A. 1985. A landscape ecological approach for grazing development (a case study in the Colombran Llanos). Unpubl. MSc. Thesis, ITC Enschede. 127 pp.

  • Forman, R.T.T. and Godron, M. 1986. Landscape Ecology. John Wiley & Sons, New York. 619 pp.

    Google Scholar 

  • Gils, H.M. van 1989. Map legends. ITC Journal, in press.

  • Goosen, D.J. 1967. Aerial Photo-Interpretation in Soil Survey. Soils Bulletin No. 6, FAO, Rome.

    Google Scholar 

  • Hielkema, J., Howard, J.A., Tucker, C.J. and van Ingenschenau, H.A. 1986. The FAO/NASA/NLR ARTEMIS system: an integrated concept for environmental monitoring by satellite in support of food/feed security and desert locust surveillance. Proc. 20th Symp. on Remote Sensing of Environment, Kenya, pp. 147–160.

  • Holdridge, L.R. 1959. Ecological indication of the need for a new approach to tropical land use. Econ. Botany 13(4): 271–280.

    Google Scholar 

  • Hommel, P.W.R.M. 1987. Landscape Ecology of Udjung Kulon (West Java). PhD. Diss., Wageningen, Priv. Publ., Appendices, coloured map. 206 pp.

    Google Scholar 

  • ITC 1977. Projet de développement rural integré de la Région Kaärta, Rep. du Mali. Phase de reconnaissance du Volet VIII, Cartographie. ITC, Enschede.

    Google Scholar 

  • Kalkhoven, J.T.R. and van der Werff, S. 1988. Mapping the potential natural vegetation. In Küchler and Zonneveld, 1988. Chap. 26, pp. 375–387.

  • Küchler, A.W. and Zonneveld, I.S. (eds.) 1988. Handbook of Vegetation Science. Kluwer Academic Publ., Dordrecht. 632 pp.

    Google Scholar 

  • Kwakernaak, C. 1986. Informatie als begrip in de landschapsecologie (information as a concept in landscape ecology). Landschap 3(3): 182–189, 248.

    Google Scholar 

  • Leeuwen, C.G. van 1981. From ecosystem to ecodevice. In Perspectives in Landscape Ecology. Proc. Internatl. Cong. Netherlands Soc. of Landscape Ecology, Veldhoven, 6–8 April 1981. pp. 29–36. Pudoc, Wageningen.

    Google Scholar 

  • Merriam, G. 1988. Landscape ecology: the ecology of heterogeneous systems. In: Landscape Ecology and Managemet, pp. 35–43. Edited by M. Moss. Polysc Publ. Inc., Montreal.

    Google Scholar 

  • Meijerink, A.M.J., Valenzuela, C.R. and Stewart, A. (eds.) 1988. ILWIS: The Integrated Land and Watershed Management Information System. ITC Publ. No. 7, Enschede. 115 pp.

  • Naveh, Z. and Liebermann, A.S. 1984. Landscape Ecology: Theory and Application. Springer-Verlag, New York. 358 pp.

    Google Scholar 

  • Neef, E. 1967. Die Theoretischen Grundlagen der Landschafflehre. Haach, Gotha/Leipzig.

    Google Scholar 

  • Opdam, P. 1984. Delineating ecotopes as holistic landscape units. Some methodological problems. Ann. Rep. RIN, Leersum, The Netherlands, pp. 77–88.

    Google Scholar 

  • Phipps, M. 1981. Information theory and landscape analysis. In Perspectives in Landscape Ecology, Proc. Internatl. Cong. Netherlandds Soc. of Landscape Ecology, Veldhoven, 6–8 April 1981. pp. 67–64. Pudoc, Wageningen.

    Google Scholar 

  • Pleijsier, L.K. 1989. Variability in soil data. In Land Qualities in Space and Time, Proc. ISSS Symp. pp. 89–100. Edited by J. Bouma and A.K. Bregt. Pudoc, Wageningen.

    Google Scholar 

  • Prigogin, I. and Strengers, I. 1985. Orde uit Chaos. Uitg. Bert Bakker, Amsterdam. 352 pp.

    Google Scholar 

  • Smuts, J.C. 1926. Holism and Evolution. MacMillan, London. 368 pp.

    Google Scholar 

  • Stan Rowe, J. 1988. The study of terrain ecosystems. In Landscape Ecology and Management, pp. 35–43. Edited by M. Moss. Polysc Publ. Inc., Montreal.

    Google Scholar 

  • Theorie Werkgroep WLO. 1986. Methoden der begrippen in de Landschapsecology (methods and concepts in landscape ecology), Neth. Soc. for Landscape Ecology. Landschap 3(3): 172–181, 248.

    Google Scholar 

  • Thie, J. and Ironside, G. (eds.) 1976. Ecological (Biophysical) Land Classification in Canada. Ecol. Land Class Series No. 1. Lands Directorate, Environment Canada, Ottawa.

    Google Scholar 

  • Troll, C. 1950. Die geografische Landschaft und ihre Forschung. Studium generale 3. Jahrgang Heft 4/5. Springer Verlag, Berlin.

    Google Scholar 

  • Tüxen, R. 1951. Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetations Kartierung. Angew. Pflanzensoziologie, Vol. 13. pp. 5–12.

    Google Scholar 

  • Wirdum, G. van 1981. Design for a land ecological survey of native protection. In Perspectives in Landscape Ecology, Proc. Internatl. Cong. Netherlands Soc. of Landscape Ecology, Veldhoven, 6–8 April 1981. pp. 245–251. Pudoc, Wageningen.

    Google Scholar 

  • Zee, D. van der and Huizing, H. 1988. Automated cartography and electronic information system. Chap. 14. pp. 163–190. In Küchler, A.W.and I.S. Zonneveld. Handbook of Vegetation Science. Kluwer Acad. Publ., Dordrecht.

    Google Scholar 

  • Zonneveld, I.S. 1979. Land Evaluation and Land(scape) Science. ITC Textbook VII.4 (2nd ed.), ITC Enschede. 134 pp.

    Google Scholar 

  • Zonneveld, I.S. 1986. A systematic approach to the evaluation of rangeland inventory data. In Rangelands, a Resource under Siege, Proc. 2nd Internat. Rangeland Cong., Canberra, pp. 515–516. Australian Acada. of Science, Canberra.

    Google Scholar 

  • Zonneveld, I.S. and Surasana, E. 1988. Ecosystem inventory/vegetation survey (Komering basin, Sumatra), ITC Journal 1988-1, pp. 67–75.

  • Zonneveld, I.S. 1988a. The ITC approach of mapping natural and semi-natural vegetation. Chap. 29. pp. 401–427. In Küchler, A.W. and I.S. Zonneveld. Handbook of Vegetation Science. Kluwer Acad. Publ., Dordrecht.

    Google Scholar 

  • Zonneveld, I.S. 1988b. Environmental indication. Chap. 36. pp. 491–499. In Küchler, A.W. and I.S. Zonneveld. Handbook of Vegetation Science. Kluwer Acad. Publ., Dordrecht.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zonneveld, I.S. The land unit — A fundamental concept in landscape ecology, and its applications. Landscape Ecol 3, 67–86 (1989). https://doi.org/10.1007/BF00131171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00131171

Keywords

Navigation