Skip to main content

Radiation Resistance in Extremophiles: Fending Off Multiple Attacks

  • Chapter
  • First Online:
Polyextremophiles

Abstract

Ionizing radiation (IR) is of particular interest in biology because its exposure results in a severe oxidative stress to all the cell’s macromolecules. Many extremophiles are found to be resistant to IR, suggesting that radiation resistance is a fortuitous consequence of a high tolerance to other environmental stressors (e.g., desiccation). In that regard, IR-resistant organisms are true polyextremophiles. It is now established that proteins are the major targets of radiation and that protection against protein oxidation is an essential process for survival from IR exposure. The IR resistance found in the halophilic archaeon, Halobacterium salinarum, is attributed to high intracellular concentrations of Mn antioxidant complexes that protect proteins against IR-induced reactive oxygen species (ROS). The variety of Mn antioxidant complexes found so far, and the potential for compatible solutes from extremophiles to provide ROS-scavenging activity in the cell, suggests that the adaptations of extremophiles to their environments provide a tremendous reservoir for novel radioprotective molecules and antioxidants against the deleterious effect of IR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Maghrebi M, Fridovich I, Benov L (2002) Manganese supplementation relieves the phenotypic deficits seen in superoxide-dismutase-null Escherichia coli. Arch Biochem Biophys 402:104–109

    Article  PubMed  CAS  Google Scholar 

  • Archibald FS, Fridovich I (1981) Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J Bacteriol 146:928–936

    PubMed  CAS  Google Scholar 

  • Archibald FS, Fridovich I (1982a) Investigations of the state of the manganese in Lactobacillus plantarum. Arch Biochem Biophys 215:589–596

    Article  PubMed  CAS  Google Scholar 

  • Archibald FS, Fridovich I (1982b) The scavenging of superoxide radical by manganous complexes: in vitro. Arch Biochem Biophys 214:452–463

    Article  PubMed  CAS  Google Scholar 

  • Barnese K, Gralla EB, Cabelli DE, Valentine JS (2008) Manganous phosphate acts as a superoxide dismutase. J Am Chem Soc 130:4604–4606

    Article  PubMed  CAS  Google Scholar 

  • Barnese K, Gralla EB, Valentine JS, Cabelli DE (2012) Biologically relevant mechanism for catalytic superoxide removal by simple manganese compounds. Proc Natl Acad Sci U S A 109:6892–6897

    Article  PubMed  CAS  Google Scholar 

  • Beblo K, Rabbow E, Rachel R, Huber H, Rettberg P (2009) Tolerance of thermophilic and hyperthermophilic microorganisms to desiccation. Extremophiles 13:521–531

    Article  PubMed  Google Scholar 

  • Beblo K, Douki T, Schmalz G, Rachel R, Wirth R, Huber H, Reitz G, Rettberg P (2011) Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation. Arch Microbiol 193:797–809

    Article  PubMed  CAS  Google Scholar 

  • Billi D, Friedmann EI, Hofer KG, Caiola MG, Ocampo-Friedmann R (2000) Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl Environ Microbiol 66:1489–1492

    Article  PubMed  CAS  Google Scholar 

  • Blasius M, Sommer S, Hubscher U (2008) Deinococcus radiodurans: what belongs to the survival kit? Crit Rev Biochem Mol Biol 43:221–238

    Article  PubMed  CAS  Google Scholar 

  • Bochkarev A, Bochkareva E, Frappier L, Edwards AM (1999) The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J 18:4498–4504

    Article  PubMed  CAS  Google Scholar 

  • Breuert S, Allers T, Spohn G, Soppa J (2006) Regulated polyploidy in halophilic archaea. PLoS One 1:e92

    Article  PubMed  Google Scholar 

  • Carreto L, Moore E, Nobre MF, Wait R, Riley PW, Sharp RJ, da Costa M (1996) Rubrobacter xylanophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int J Syst Bacteriol 46:460–465

    Article  CAS  Google Scholar 

  • Cavicchioli R, Amils R, Wagner D, McGenity T (2011) Life and applications of extremophiles. Environ Microbiol 13:1903–1907

    Article  PubMed  Google Scholar 

  • Chang EC, Kosman DJ (1989) Intracellular Mn (II)-associated superoxide scavenging activity protects Cu, Zn superoxide dismutase-deficient Saccharomyces cerevisiae against dioxygen stress. J Biol Chem 264:12172–12178

    PubMed  CAS  Google Scholar 

  • Cockell CS, Catling DC, Davis WL, Snook K, Lee P, McKay CP (2000) The ultraviolet environment of Mars: biological implications past, present, and future. Icarus 146:343–359

    Article  PubMed  CAS  Google Scholar 

  • Confalonieri F, Sommer S (2011) Bacterial and archaeal resistance to ionizing radiation. J Phys 261:012005

    Google Scholar 

  • Constantinesco F, Forterre P, Koonin EV, Aravind L, Elie C (2004) A bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea. Nucleic Acids Res 32:1439–1447

    Article  PubMed  CAS  Google Scholar 

  • Dale WM (1940) The effect of X-rays on enzymes. Biochem J 34:1367–1373

    PubMed  CAS  Google Scholar 

  • Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7:237–245

    Article  PubMed  CAS  Google Scholar 

  • Daly MJ (2012) Death by protein damage in irradiated cells. DNA Repair 11:12–21

    Article  PubMed  CAS  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Venkateswaran A, Hess M, Omelchenko MV, Kostandarithes HM, Makarova KS, Wackett LP, Fredrickson JK, Ghosal D (2004) Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025–1028

    Article  PubMed  CAS  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li SMW, Kemmer KM, Fredrickson JK (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5:e92

    Article  PubMed  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Kiang JG, Fukumoto R, Lee DY, Wehr NB, Viteri GA, Berlett BS, Levine RL (2010) Small-molecule antioxidant proteome-shields in Deinococcus radiodurans. PLoS One 5:e12570

    Article  PubMed  Google Scholar 

  • DasSarma S, DasSarma P (2012) Halophiles. In: Encyclopedia of life sciences. Wiley, Chichester. doi:10.1002/9780470015902.a0000394.pub3

    Google Scholar 

  • Davila AF, Gomez-Silva B, de los Rios A, Ascaso C, Olivares H, McKay CP, Wierzchos J (2008) Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence. J Geophys Res 113:GO1028

    Article  Google Scholar 

  • Delmas S, Shunburne L, Ngo HP, Allers T (2009) Mre11-Rad50 promotes rapid repair of DNA damage in the polyploid archaeon Haloferax volcanii by restraining homologous recombination. PLoS Genet 5:e1000552

    Article  PubMed  Google Scholar 

  • DeVeaux LC, Muller JA, Smith J, Petrisko J, Wells DP, DasSarma S (2007) Extremely radiation-resistant mutants of a halophilic archaeon with increased single-stranded DNA-binding protein (RPA) gene expression. Radiat Res 168:507–514

    Article  PubMed  CAS  Google Scholar 

  • Dianov GL, O’Neill P, Goodhead DT (2001) Securing genome stability by orchestrating DNA repair: removal of radiation-induced clustered lesions in DNA. Bioessays 23:745–749

    Article  PubMed  CAS  Google Scholar 

  • DiRuggiero J, Santangelo N, Nackerdien Z, Ravel J, Robb FT (1997) Repair of extensive ionizing-radiation DNA damage at 95°C in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 179:4643–4645

    PubMed  CAS  Google Scholar 

  • Du J, Gebicki JM (2004) Proteins are major initial cell targets of hydroxyl free radicals. Int J Biochem Cell Biol 36:2334–2343

    Article  PubMed  CAS  Google Scholar 

  • Faria TQ, Lima JC, Bastos M, Maçanita AL, Santos H (2004) Protein stabilization by osmolytes from hyperthermophiles: effect of mannosylglycerate on the thermal unfolding of recombinant nuclease a from Staphylococcus aureus studied by picosecond time-resolved fluorescence and calorimetry. J Biol Chem 47:48680–48691

    Article  Google Scholar 

  • Fredrickson JK, Li SM, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM, Scholten JC, Brown MG, Balkwill DL, Daly MJ (2008) Protein oxidation: key to bacterial desiccation resistance? ISME J 2:393–403

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Ramirez-Peralta A, Gaidamakova E, Zhang P, Li YQ, Daly MJ, Setlow P (2011) Effects of Mn levels on resistance of Bacillus megaterium spores to heat, radiation and hydrogen peroxide. J Appl Microbiol 111:663–670

    Article  PubMed  CAS  Google Scholar 

  • Gladyshev E, Meselson M (2008) Extreme resistance of bdelloid rotifers to ionizing radiation. Proc Natl Acad Sci U S A 105:5139–5144

    Article  PubMed  CAS  Google Scholar 

  • Granger AC, Gaidamakova EK, Matrosova VY, Daly MJ, Setlow P (2011) Effects of levels of Mn and Fe on Bacillus subtilis spore resistance, and effects of Mn2+, other divalent cations, orthophosphate, and dipicolinic acid on resistance of a protein to ionizing radiation. Appl Environ Microbiol 77:32–40

    Article  PubMed  CAS  Google Scholar 

  • Gutman PD, Fuchs P, Minton KW (1994) Restoration of the DNA damage resistance of Deinococcus radiodurans DNA polymerase mutants by Escherichia coli DNA polymerase I and Klenow fragment. Mutat Res 314:87–97

    Article  PubMed  CAS  Google Scholar 

  • Haskin LA, Wang A, Jolliff BL, McSween HY, Clark BC, Des Marais DJ, McLennan SM, Tosca NJ, Hurowitz JA, Farmer JD, Yen A, Squyres SW, Arvidson RE, Klingelhöfer G, Schröder C, De Souza PA Jr, Ming DW, Gellert R, Zipfel J, Brückner J, Bell JF III, Herkenhoff K, Christensen PR, Ruff S, Blaney D, Gorevan S, Cabrol NA, Crumpler L, Grant J, Soderblom L (2005) Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater. Nature 436:66–69

    Article  PubMed  CAS  Google Scholar 

  • Holliday R (2004) Early studies on recombination and DNA repair in Ustilago maydis. DNA Repair 6:671–682

    Article  Google Scholar 

  • Hopfner KP, Karcher A, Craig L, Woo TT, Carney JP, Tainer JA (2001) Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105:473–485

    Article  PubMed  CAS  Google Scholar 

  • Horikawa DD, Sakashita T, Katagiri C, Watanabe M, Kikawada T, Nakahara Y, Hamada N, Wada S, Funayama T, Higashi S, Kobayashi Y, Okuda T, Kuwabara M (2006) Radiation tolerance in the tardigrade Milnesium tardigradum. Int J Radiat Biol 82:843–848

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson F (1966) The molecular basis for radiation effects on cells. Cancer Res 26:2045–2052

    PubMed  CAS  Google Scholar 

  • Imlay JA (2006) Iron-sulphur clusters and the problem with oxygen. Mol Microbiol 59:1073–1082

    Article  PubMed  Google Scholar 

  • Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776

    Article  PubMed  CAS  Google Scholar 

  • Johnson TE, Hartman PS (1988) Radiation effects on life span in Caenorhabditis elegans. J Gerontol 43:B137–B141

    Article  PubMed  CAS  Google Scholar 

  • Jolivet E, L’Haridon S, Corre E, Forterre P, Prieur D (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851

    Article  PubMed  CAS  Google Scholar 

  • Jolivet E, Corre E, L’Haridon S, Forterre P, Prieur D (2004) Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8:219–227

    Article  PubMed  CAS  Google Scholar 

  • Kaur A, Robinson C, van PT, Busch C, Robinson CK, Pan M, Pang WL, Reiss DJ, DiRuggiero J, Baliga NS (2010) Coordination of frontline defense mechanisms under severe oxidative stress. Mol Syst Biol 6:393

    Article  PubMed  Google Scholar 

  • Kehres DG, Maguire ME (2003) Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria. FEMS Microbiol Rev 27:263–290

    Article  PubMed  CAS  Google Scholar 

  • Kish A, DiRuggiero J (2008) Rad50 is not essential for the Mre11-dependent repair of DNA double strand breaks in Halobacterium sp. str. NRC-1. J Bacteriol 190:5210–5216

    Google Scholar 

  • Kish A, Kirkali G, Robinson C, Rosenblatt R, Jaruga P, Dizdaroglu M, DiRuggiero J (2009) Salt shield: intracellular salts provide protection against ionizing radiation in the halophilic archaeon, Halobacterium salinarum NRC-1. Environ Microbiol 11:1066–1078

    Google Scholar 

  • Kish A, Griffin PL, Rogers KL, Fogel ML, Hemley RJ, Steele A (2012) High-pressure tolerance in Halobacterium salinarum NRC-1 and other non-piezophilic prokaryotes. Extremophiles 16:355–361

    Google Scholar 

  • Klump H, DiRuggiero J, Kessel M, Park JB, Adams MWW, Robb FT (1992) Glutamate dehydrogenase from the hyperthermophile Pyroccocus furiosus: thermal denaturation and activation. J Biol Chem 267:22681–22685

    PubMed  CAS  Google Scholar 

  • Kottemann M, Kish A, Iloanusi C, Bjork S, Diruggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227

    Article  PubMed  CAS  Google Scholar 

  • Kranner I (2002) Glutathione status correlates with different degrees of desiccation tolerance in three lichens. New Phytol 154:451–460

    Article  CAS  Google Scholar 

  • Kranner I, Birtic S (2005) A modulating role for antioxidants in desiccation tolerance. Integr Comp Biol 45:734–740

    Article  PubMed  CAS  Google Scholar 

  • Krisko A, Leroy M, Radman M, Meselson M (2012) Extreme anti-oxidant protection against ionizing radiation in bdelloid rotifers. Proc Natl Acad Sci U S A 109:2354–2357

    Article  PubMed  CAS  Google Scholar 

  • Lamosa P, Turner D, Ventura R, Maycock C, Santos H (2003) Protein stabilization by compatible solutes. Effect of diglycerol phosphate on the dynamics of Desulfovibrio gigas rubredoxin studied by NMR. Eur J Biochem 270:4606–4614

    Article  PubMed  CAS  Google Scholar 

  • Liedert C, Peltola M, Bernhardt J, Neubauer P, Salkinoja-Salonen M (2012) Physiology of resistant Deinococcus geothermalis bacterium aerobically cultivated in low-manganese medium. J Bacteriol 194:1552–1561

    Article  PubMed  CAS  Google Scholar 

  • Markillie LM, Varnum SM, Hradecky P, Wong KK (1999) Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J Bacteriol 181:666–669

    PubMed  CAS  Google Scholar 

  • Martins LO, Huber R, Stetter KO, da Costa MS, Santos H (1997) Organic solutes in hyperthermophilic archaea. Appl Environ Microbiol 63:896–902

    PubMed  CAS  Google Scholar 

  • Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637

    PubMed  CAS  Google Scholar 

  • McNaughton RL, Reddi AR, Clement MHS, Sharma A, Barnese K, Rosenfeld L, Gralla EB, Valentine JS, Culotta VC, Hoffman BC (2010) Probing in vivo Mn2+ speciation and oxidative stress resistance in yeast cells with electron-nuclear double resonance spectroscopy. Proc Natl Acad Sci U S A 107:15335–15339

    Article  PubMed  CAS  Google Scholar 

  • Müller V, Spanheimer R, Santos H (2005) Stress response by solute accumulation in archaea. Curr Opin Microbiol 8:729–736

    Article  PubMed  Google Scholar 

  • Nauser T, Koppenol WH, Gebicki JM (2005) The kinetics of oxidation of GSH by protein radicals. Biochem J 392:693–701

    Article  PubMed  CAS  Google Scholar 

  • Ogunniyi AD, Mahdi LK, Jennings MP, McEwan AG, McDevitt CA, van der Hoek MB, Bagley CJ, Hoffmann P, Gould KA, Paton JC (2010) Central role of manganese in regulation of stress responses, physiology, and metabolism in Streptococcus pneumoniae. J Bacteriol 192:4489–4497

    Article  PubMed  CAS  Google Scholar 

  • Omelchenko MV, Wolf YI, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Daly MJ, Koonin EV, Makarova KS (2005) Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance. BMC Evol Biol 5:57

    Article  PubMed  Google Scholar 

  • Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10

    Article  PubMed  CAS  Google Scholar 

  • Osterloo MM, Hamilton VE, Bandfield JL, Glotch TD, Baldridge AM, Christensen PR, Tornabene LL, Anderson FS (2008) Chloride bearing materials in the southern highlands of Mars. Science 319:1651–1654

    Article  PubMed  CAS  Google Scholar 

  • Ramos A, Raven NDH, Sharp RJ, Bartolucci S, Rossi M, Cannio R, Lebbink J, van der Oost J, de Vos WM, Santos H (1997) Stabilization of enzymes against thermal stress and freeze-drying by mannosylglycerate. Appl Environ Microbiol 63:4020–4025

    PubMed  CAS  Google Scholar 

  • Rastogi RP, Richa, Sinha RP, Singh SP, Häder DP (2010) Photoprotective compounds from marine organisms. J Ind Microbiol Biotechnol 37:537–558

    Article  PubMed  CAS  Google Scholar 

  • Regulus P, Duroux B, Bayle P, Favier A, Cadet J, Ravanat JL (2007) Oxidation of the sugar moiety of DNA by ionizing radiation or bleomycin could induce the formation of a cluster DNA lesion. Proc Natl Acad Sci U S A 104:14032–14037

    Article  PubMed  CAS  Google Scholar 

  • Rieder R, Gellert R, Anderson RC, Bruckner J, Clark BC, Dreibus G, Economou T, Kingelhöfer G, Lugmair GW, Ming DW, Squyres SW, d’Uston C, Wänke H, Yen A, Zipfel J (2004) Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray spectrometer. Science 306:1746–1749

    Article  PubMed  CAS  Google Scholar 

  • Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65:27–33

    Article  PubMed  CAS  Google Scholar 

  • Robinson CK, Webb K, Kaur A, Jaruga P, Dizdaroglu M, Baliga NS, Place A, DiRuggiero J (2011) A major role for nonenzymatic antioxidant processes in the radioresistance of Halobacterium salinarum. J Bacteriol 193:1653–1662

    Article  PubMed  CAS  Google Scholar 

  • Rolfsmeier ML, Laughery MF, Haseltine CA (2011) Repair of DNA double-strand breaks induced by ionizing radiation damage correlates with upregulation of homologous recombination genes in Sulfolobus solfataricus. J Mol Biol 414:485–498

    Article  PubMed  CAS  Google Scholar 

  • Santos H, da Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4:501–509

    Article  PubMed  CAS  Google Scholar 

  • Scholz S, Sonnenbichler J, Schäfer W, Hense R (1992) Di-myo-inositol-1,1′-phosphate: a new inositol phosphate isolated from Pyrococcus woesei. FEBS J 306:239–242

    Article  CAS  Google Scholar 

  • Scott MD, Meshnick SR, Eaton JW (1989) Superoxide dismutase amplifies organismal sensitivity to ionizing radiation. J Biol Chem 264:2498–2501

    PubMed  CAS  Google Scholar 

  • Skowyra A, MacNeill SA (2011) Identification of essential and non-essential single-stranded DNA-binding proteins in a model archaeal organism. Nucleic Acids Res 40:1077–1090

    Article  PubMed  Google Scholar 

  • Slade D, Radman M (2011) Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75:133–191

    Article  PubMed  CAS  Google Scholar 

  • Sobota JM, Imalay JA (2011) Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proc Natl Acad Sci U S A 108:5402–5407

    Article  PubMed  CAS  Google Scholar 

  • Stroud A, Liddell S, Allers T (2012) Genetic and biochemical identification of a novel single-stranded DNA-Binding complex in Haloferax volcanii. Front Microbiol 3:224

    Article  PubMed  Google Scholar 

  • Suzuki K, Collins MD, Iijima E, Komagata K (1988) Chemotaxonomic characterization of a radioto­lerant bacterium, Arthrobacter radiotolerans: Description of Rubrobacter radiotolerans gen. nov., comb. nov. FEMS Microbiol Lett 52:33–40

    Article  CAS  Google Scholar 

  • Ward JF (1994) The complexity of DNA damage: relevance to biological consequences. Int J Radiat Biol 66:427–432

    Article  PubMed  CAS  Google Scholar 

  • Webb KM, DiRuggiero J (2012) Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea. Archaea, Article ID 845756

    Google Scholar 

  • Webb K, Wu J, Robinson CK, Tomiya N, Lee Y, DiRuggiero J (2013) Effects of intracellular Mn on the radiation resistance of the halophilic archaeon Halobacterium salinarum. Extremophiles, doi:10.1007/s00792-013-0533-9

  • Whitehead K, Kish A, Pan M, Kaur A, Reiss DJ, King N, Hohmann L, DiRuggiero J, Baliga NS (2006) An integrated systems approach for understanding cellular responses to gamma radiation. Mol Syst Biol 2:47–53

    Article  PubMed  Google Scholar 

  • Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66:61–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was possible with the support of AFOSR (grant FA95500710158) to J.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly M. Webb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Webb, K.M., DiRuggiero, J. (2013). Radiation Resistance in Extremophiles: Fending Off Multiple Attacks. In: Seckbach, J., Oren, A., Stan-Lotter, H. (eds) Polyextremophiles. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6488-0_10

Download citation

Publish with us

Policies and ethics