Skip to main content

Cell Walls and Golgi

  • Chapter
  • First Online:
Immunocytochemistry of Plant Cells
  • 862 Accesses

Abstract

Plant cell walls represent the extracellular matrix of most plant cells (Carpita and Gibert 1993), the exceptions being wall-less endosperm cells in such species as Haemanthus. Cell walls are the site of cellulose, the world’s most abundant polymer. Besides cellulose, the cellulose microfibrils are embedded in a matrix of other structural non-cellulosic polysaccharides classified grossly as pectins, xylans, and xyloglucans that define some of the properties of the walls. Cells are connected together by a chiefly pectic layer called the middle lamellae. Secondary walls that are typical of xylem elements and woody tissues and in addition to the other components are lignified as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci 92:9353–9357

    Article  PubMed  CAS  Google Scholar 

  • Basra AS, Malik CP (1984) Development of the cotton fiber. Int Rev Cytology 89:65–113

    Article  CAS  Google Scholar 

  • Bowling AJ, Vaughn KC (2008a) Immunocytochemical characterization of tension wood: gelatinous fibers contain more than just cellulose. Am J Bot 95:655–663

    Article  PubMed  Google Scholar 

  • Bowling AJ, Vaughn KC (2008b) Structural and immunocytochemical characterization of the adhesive tendril of Virginia creeper (Parthenocissus quinquefolia [L.] Planch). Protoplasma 232:153–163

    Article  PubMed  CAS  Google Scholar 

  • Bowling AJ, Vaughn KC (2009) Gelatinous fibers are widespread in coiling tendrils and twining vines. Am J Bot 96:719–727

    Google Scholar 

  • Bowling AJ, Vaughn KC (2011) Leaf abscission in Impatiens (Balsaminaceae) is due to loss of highly de-esterified homogalacturonans in the middle lamellae. Am J Bot 98:619–629

    Article  Google Scholar 

  • Bowling AJ, Vaughn KC, Hoagland RE, Stetina K, Boyette CD (2010) Immunocytochemical investigation of the necrotrophic phase of the fungus Colletotrichum gloeosporiodies in the biocontrol of hemp sesbania (Sesbania exaltata; Papilionaceae). Am J Bot 97:1915–1925

    Article  PubMed  Google Scholar 

  • Bowling AJ, Maxwell HB, Vaughn KC (2008) Unusual trichome structure and composition in mericarps of catchweed bedstraw (Galium aparine). Protoplasma 232:153–163

    Article  PubMed  CAS  Google Scholar 

  • Bowling AJ, Vaughn KC, Turley RB (2011) Polysaccharide and glycoprotein distribution in the epidermis of cotton ovules during early fiber initiation and growth. Protoplasma 248:579–590

    Article  PubMed  CAS  Google Scholar 

  • Brewin NJ, Robertson JG, Wood EA, Wells B, Larkins AP, Gaifre G, Butcher GW (1985) Monoclonal antibodies to antigens in the peribacteroid membrane for Rhizobium-induced root nodules of pea cross-react with plasma membranes and Golgi bodies. EMBO J 4:605–611

    PubMed  CAS  Google Scholar 

  • Carafa A, Duckett JG, Knox JP, Ligrone R (2005) Distribution of cell-wall xylans in bryophytes and tracheophytes: new insights into basal interrelationships of land plants. New Phytol 168:231–240

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  PubMed  CAS  Google Scholar 

  • Cassab GI, Varner JE (1987) Immunocytochemical localization of extensin in developing soybean seed coats by immunogold-silver staining and by tissue printing on nitrocellulose paper. J Cell Biol 105:2581–2588

    Article  PubMed  CAS  Google Scholar 

  • Clair B, Thibout B, Sugiyams J (2005) On the detachment of gelatinous layer in tension wood fibers. J Wood Sci 51:213-221

    Google Scholar 

  • Cochran PG, Vaughn KC, Turley RB (in preparation) Non-glandular trichome cell are compositionally distinct from neighboring atrichoblasts, glandular trichomes and fiber of upland cotton (Gossypium hirsutum). Submitted to Botany

    Google Scholar 

  • Darwin C (1875) The movements and habits of climbing plants. Henry Murray, London

    Google Scholar 

  • Dahiya P, Brewin NJ (2000) Immunogold localization of callose and other cell wall components in pea nodule transfer cells. Protoplasma 214:210–218

    Article  Google Scholar 

  • De Lorenzo CA, Fernandez-Pascual MM, de Felipe MR (1998) Subcellular localization of glycoprotein epitopes during the development of lupin root nodules. Protoplasma 201:71–84

    Article  Google Scholar 

  • Egley GH, Paul RN, Vaughn KC, Duke SO (1983) Role of peroxidase in the development of water impermeable seed coats by Sida spinosa L. Planta 157:224–232

    Article  CAS  Google Scholar 

  • Evert RF (2006) Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body; Their Structure Function and Development. Wiley, Hoboken

    Book  Google Scholar 

  • Folkers U, Berger J, Hulskamp M (1997) Cell morphogenesis of trichomes in Arabidopsis: differential control of primary and secondary branching by branch initiation regulators and cell growth. Development 124:3779–3786

    PubMed  CAS  Google Scholar 

  • Freshour G, Clay RP, Fuller MS, Albersheim P, Darvill AG, Hahn MG (1996) Development and tissue-specific structural alterations of the cell wall polysaccharides of Arabidopsis thaliana roots. Plant Physiol 110:1413–1429

    PubMed  CAS  Google Scholar 

  • Gaspar Y, Johnson KL, Mckenna JA, Bacic A, Schulz CJ (2001) The complex structures of arabinogalactan-proteins and the journey towards understanding their functions. Plant Mol Biol 47:161–176

    Google Scholar 

  • Geitmann A, Steer M (2006) The architecture and properties of the pollen tube cell wall. Plant Cell Mono 3:177–200

    Article  CAS  Google Scholar 

  • Henderson J, Davies HA, Heyer SJ, Osborne DJ (2001) The study of a monocotyledon abscission zone using microscopic, chemical, enzymatic and 13-C CP/MAS NMR analyses. Phytochemistry 56:131–139

    Article  PubMed  CAS  Google Scholar 

  • Hoffman JC, Vaughn KC (1994) Mitotic disrupter herbicides act by a single mechanism but vary in efficacy. Protoplasma 179:16–25

    Google Scholar 

  • Holmsen JD, Hess FD (1985) Comparison of the disruption of mitosis and cell plate formation in oat roots by DCPA, colchicine and propham. J Exp Bot 36:1504–1513

    Article  CAS  Google Scholar 

  • Howlett BJ, Vithnage HIM, Knox RB (1981) Immunofluorescent localization of two water soluble glycoproteins including the major allergen of ryegrass (Lolium perenne). Histochem J 13:461–480

    Article  PubMed  CAS  Google Scholar 

  • Isnard S, Silk WK (2009) Moving with the climbing plant from Darwin’s time into the 21st century. Am J Bot 96:21205–1221

    Article  Google Scholar 

  • Jimenez T, Martin I, Labrador E, Doplco B (2006) The immunolocalization of a xyloglucan endotransglucosylase/hydrolase specific to elongating tissues in Cicer arietinum suggests a role in the elongation of vascular cells. J Exp Bot 57:3979–3988

    Article  PubMed  CAS  Google Scholar 

  • Joselau JP, Faix O, Kuroda KI, Ruel K (2004) A polyclonal antibody directed against syringylpropane epitopes of native lignins. Compt Rendu Biol Paris 327:809–816

    Article  Google Scholar 

  • Joselau JP, Ruel K (1997) Study of non-invasive techniques in growing maize internodes (An investigation by Fourier transform infrared resonance spectroscopy and immunocytochemical transmission electron microscopy). Plant Physiol 114:1123–1133

    Article  Google Scholar 

  • Kim HJ, Pesacreta TC, Triplett BA (2004) Cotton-fiber germin-like protein. II: Immunolocalization, purification, and functional analysis. Planta 218:525–535

    Article  PubMed  CAS  Google Scholar 

  • Knox RB (1982) Methods for locating and identifying antigens in plant tissues. In: Bullock GR, Petrusz P (eds) Techniques in Immunocytochemistry, vol 1. Academic Press, New York, pp 205–238

    Google Scholar 

  • Kremer C, Pettolino F, Bacic A, Drinnan A (2004) Distribution of cell wall components in Sphagnum hyaline cells and in liverwort and hornwort elaters. Planta 219:1023–1035

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy KV (1999) Methods in cell wall cytochemistry. CRC press, Boca Raton, FL, USA

    Google Scholar 

  • Lee YR, Derbyshire P, Know JP, Hvoslef-Eide AK (2008) Sequential cell wall transformations in response to pedicel abscission event in Euphorbia pulcherrima. Plant J 54:993–1003

    Article  PubMed  CAS  Google Scholar 

  • Lehnen LP, Vaughn KC (1991) Immunofluorescence and electron microscopic investigations of DCPA-treated oat roots. Pestic Biochem Physiol 40:47–57

    Article  CAS  Google Scholar 

  • Lehnen LP, Vaughan MA, Vaughn KC (1992) Terbutol affects microtubule organizing centers. J Exp Bot 41:537–546

    Article  Google Scholar 

  • Ligrone R, Vaughn KC, Renzaglia KS, Knox JP, Duckett JG (2002) Diversity in the distribution of polysaccharides and glycoprotein epitopes in the cell walls of bryophytes: new evidence for the multiple evolution of water conducting cells. New Phytol 156:491–508

    Article  CAS  Google Scholar 

  • Ligrone R, Carafa A, Duckett JG, Renzaglia KS, Ruel K (2008) Immunocytochemical detection of lignin-related epitopes in cell walls in bryophytes and the charalean alga Nitella. Plant Sys Evol 270:257–272

    Article  CAS  Google Scholar 

  • Ligrone R, Vaughn KC, Rascio N (2011) A cytochemical and immunocytochemical analysis of the cell wall labyrinth apparatus in leaf transfer cells in Elodea canadensis. Ann Bot 107:717–722

    Article  PubMed  CAS  Google Scholar 

  • Lord EM (2001) Adhesion molecules in lily pollination. Sex Plant Reprod 14:57–62

    Google Scholar 

  • Losner-Goshen D, Portnoy VH, Mayer AM, Joel DM (1998) Pectolytic activity in the haustorium of the parasitic plant Orobanche L. (Orobanchaceae) in host roots. Ann Bot 81:319–326

    Article  CAS  Google Scholar 

  • Marcus SE, Verhertbruggen Y, Herve’ C, Ordaz-Ortiz J, Farkas V, Willats WGT, Knox JP (2008) Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol 8:60. doi:10.1186/1471-229-8-60

    Article  PubMed  Google Scholar 

  • McCartney L, Gilbert HJ, Bolam DN, Boraston AB, Knox JP (2004) Glycoside hydrolase carbohydrate-binding modules as molecular probes for the analysis of plant cell wall polymers. Anal Biochem 326:49–54

    Article  PubMed  CAS  Google Scholar 

  • McCurdy DW (1999) Is 2,3-butanedione monoxime an effective inhibitor of myosin-based activities in plant cells? Protoplasma 209:120–125

    Article  PubMed  CAS  Google Scholar 

  • Mellerowicz EJ, Gorshkova TA (2012) Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition. J Exp Bot 63:551–565

    Article  PubMed  CAS  Google Scholar 

  • Mellon JE, Vaughn KC (2011) Immunohistochemical investigation of cotton carpel tissue exposed to xylanolytic hydrolases of Aspergillus flavus. Physiol Molec Plant Physiol 76:34–38

    Article  CAS  Google Scholar 

  • Meloche CG, Knox JP, Vaughn KC (2007) A cortical band of gelatinous fibers causes the coiling of redvine tendrils: a model based upon cytochemical and immunocytochemical studies. Planta 225:485–498

    Article  PubMed  CAS  Google Scholar 

  • Moore PJ, Staehelin LA (1988) Immunogold localization of the cell wall matrix polysaccharides rhamnogalactironan 1 and xyloglucan during cell expansion and cytokinesis in Trifolium pratense L. Planta 174:433–445

    Article  CAS  Google Scholar 

  • Nakashima J, Laosinchai W, Cui X, Brown RM (2003) New insight into the mechanism of cellulose and callose biosynthesis: proteases may regulate callose synthesis upon wounding. Cellulose 10:369–389

    Article  CAS  Google Scholar 

  • Neumann U, Vian B, Weber HC, Salle G (1999) Interface between haustoria of parasitic members of the Scrophulariaceae and their hosts: a histochemical and immunocytochemical approach. Protoplasma 207:84–97

    Article  Google Scholar 

  • Northcote DH, Davey R, Lay J (1989) Use of antisera to localize callose, xylan and arabinogalactan in cell-plate, primary and secondary walls of plant cells. Plants 178:153–163

    Google Scholar 

  • Parre E, Geitman A (2005) More than a leak sealant. The mechanical properties of callose in pollen tubes. Plant Physiol 137:274–286

    Article  PubMed  CAS  Google Scholar 

  • Reid PD, Pont-Lezica RF, del Campillo T, Taylor R (1992) Tissue printing: tools for the study of anatomy histochemistry and gene expression. Academic Press, San Diego

    Google Scholar 

  • Rose J, Catala C, Gonzalez-Carranza Z, Roberts J (2003) Cell wall disassembly. In: Rose JK (ed) The plant cell wall. Annual plant reviews 8. CRC Press, Boca Raton, pp 265–324

    Google Scholar 

  • Ruel K, Faix O, Joseleau JP (1994) New immunogold probes for studying the distribution of the different lignin types during plant cell wall biogenesis. J Trace Microprobe Tech 12:247–265

    Google Scholar 

  • Sabba RP, Durso NA, Vaughn KC (1999) Structural and immunocytochemical characterization of the walls of dichlobenil-habituated BY-2 tobacco cells. Int J Plant Sci 160:275–290

    Article  CAS  Google Scholar 

  • Salnikov VV, Grimson MJ, Seagull RW, Haigler CH (2003) Localization of sucrose synthase and callose in freeze-substituted secondary-wall-stage cotton fibers. Protoplasme 221:175–184

    Google Scholar 

  • Samuels AL, Giddings TH, Staehelin LA (1995) Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J Cell Biol 130:1345–1357

    Google Scholar 

  • Schuette S, Wood AJ, Geisler M, Geisler-Lee J, Ligrone R, Renzaglia KS (2009) Novel localization of callose in the spores of Physcomitrella patens and phylogenomics of the callose synthase gene family. Ann Bot 103:749–756

    Article  PubMed  CAS  Google Scholar 

  • Scurfield G (1972) Histochemistry of reaction wood cell walls in two species of Eucalyptus and in Tristania conferta. Aust J Bot 92:1820–1826

    Google Scholar 

  • Sexton R (1979) Spatial and temporal aspects of cell separation in the foliar abscission zones of Impatiens sultani Hook. Protoplasma 99:53–66

    Article  Google Scholar 

  • Sexton R, Jamieson GGC, Allan MHIL (1977) An ultrastructural study of abscission zone cells with special reference to the mechanism of enzyme secretion. Protoplasma 109:335–347

    Article  Google Scholar 

  • Sher JM, Holbrook NM, Silk WK (2001) Temporal and spatial patterns of twining force and lignifications of stems of Ipomeae purpurea. Planta 213:192–198

    Article  Google Scholar 

  • Sherman TD, Pettigrew WT, Voughn KC (1999) Structural and immunological characterization of the Cuscuta pentagona chloroplast. Plant Cell Physiol 40:592–603

    Google Scholar 

  • Sherman TD, Bowling AJ, Berger TW, Vaughn KC (2008) The vestiges root of dodder Custa pentagon seedlings. Int J Plant Sci 169:992–1012

    Google Scholar 

  • Singh B, Avci L, Inwood SEE, Grimson MJ, Landgral J, Mohnen D, Sorenson L, Wilkerson CB, Willats WGT, Haigler CH (2009) A specialized outer layer of the primary wall joins elongating cotton fibers into tissue-like bundles. Plant Physiol 150:684–699

    Article  PubMed  CAS  Google Scholar 

  • Stafstrom JP, Staehelin LA (1988) Antibody localization of extensin in cell walls of carrot storage roots. Planta 174:321–332

    Article  CAS  Google Scholar 

  • Turley RB, Vaughn KC (2011) Differential expression of trichomes o the leaves of upland cotton (Gossypium hirsutum L.). J Cotton Sci 16:1–19

    Google Scholar 

  • Ueda E, Nakamura S (2000) Abscission of Azolla branches induced by ethylene and sodium azide. Plant Cell Physiol 41:1365–1372

    Article  Google Scholar 

  • VandenBosch KA, Bradley DJ, Knox JP, Perotto S, Butcher GW, Brewin JJ (1989) Common components of the infection thread matrix and the intercellular space identified by immunocytochemical analysis of pea root nodules and uninfected roots. EMBO J 8:335–342

    PubMed  CAS  Google Scholar 

  • Vandevenne E, Christian S, VanBuggenhout S, Joile RP, Gonzalez-Vallinas M, Duvetter T, Declerk PJ, Hendricks ME, Gils A, Van Loey A (2010) Advances in understanding pectin methylesterase inhibitor in kiwi fruit: an immunological approach. Planta 233:287–298

    Google Scholar 

  • Vaughn KC (2002a) Attachment of the parasitic weed dodder to the host. Protoplasma 219:227–237

    Article  PubMed  CAS  Google Scholar 

  • Vaughn KC (2002b) Cellulose biosynthesis inhibitors herbicides. In: Herbicide Classes in Development (Boger P, Wakayaskik, Hiraik D, eds) Springer, Berlin pp 139–150

    Google Scholar 

  • Vaughn KC (2003) Dodder hyphae invade the host: a structural and immunocytochemical characterization. Protoplasma 220:189–200

    Article  PubMed  CAS  Google Scholar 

  • Vaughn KC (2006a) The abnormal cell plates formed after microtubule disrupter herbicide treatments are enriched in callose. Pestic Biochem Physiol 84:63–73

    Article  CAS  Google Scholar 

  • Vaughn KC (2006b) Conversion of the searching hyphae of dodder into xylic and phloic hyphae: a cytochemical and immunocytochemical investigation. Inter J Plant Sci 167:1099–1114

    Google Scholar 

  • Vaughn KC, Bowling AJ (2011) Biology and physiology of vines. Hortic Rev 38:1–21

    Article  Google Scholar 

  • Vaughn KC, Turley RB (1999) The primary walls of cotton fibers contain an ensheathing pectin layer. Protoplasma 209:226–237

    Article  Google Scholar 

  • Vaughn KC, Turley RB (2001) Ultrastructural effects of cellulose biosynthetic inhibitor herbicides on developing cotton fibers. Protoplasma 216:80–93

    Article  PubMed  CAS  Google Scholar 

  • Vaughn KC, Hoffman JC, Hahn MG, Staehelin LA (1996) The herbicide dichlobenil disrupts cell plate formation: immunogold characterization. Protoplasma 194:117–132

    Article  CAS  Google Scholar 

  • Vaughn KC, Barger W, Cosgrove D (2001) Dodders utilize expansin to attach to and to invade the host. Plant Biol 2001:17–18

    Google Scholar 

  • Vaughn KC, Talbot MJ, Offler CE, McCurdy DW (2007) Wall ingrowths in epidermal cells of Vicia faba cotyledons are modified primary walls marked by localized accumulations of arabinogalactan protein. Plant Cell Physiol 48:159–168

    Article  PubMed  CAS  Google Scholar 

  • Vaughn KC, Bowling AJ, Ruel KJ (2011) The mechanism for explosive seed dispersal in Cardamine hirsuta (Brassicaceae). Am J Bot 98:1276–1285

    Article  PubMed  Google Scholar 

  • Vicre M, Jauneau A, Knox JP, Driouch A (1998) Immunolocalization of B-(1 → 4) and B-(1 → 6)-D-galactan epitopes in the cell wall and Golgi stacks of developing flax roots. Protoplasma 203:26–34

    Article  CAS  Google Scholar 

  • Wemmer T, Kaufmann H, Kirch HH, Schneider K, Lottspeich F, Thompson RD (1994) The most abundant soluble basic protein of the stylar transmitting tract in potato (Solanum tuberosum L.) is an endochitinase. Planta 194:264–273

    Article  PubMed  CAS  Google Scholar 

  • Werker E (2000) Trichome diversity and development. Adv Bot Res 31:1–35

    Article  Google Scholar 

  • Willats WGT, McCartney L, Steele-King CG, Marcus SE, Mort A, Huisman M, van Alebeek GJ, Schols HA, Voragen AGJ, LeGoff A, Bonnin E, Thibault JF, Knox JP (2004) A xylogalacturonan epitope is specifically associated with plant cell detachment. Planta 218:673–681

    Article  PubMed  CAS  Google Scholar 

  • Ye ZH, Varner JE (1991) Tissue-specific expression of cell wall proteins in developing soybean tissues. Plant Cell 3:23–37

    PubMed  CAS  Google Scholar 

  • Young RE, McFarlane HE, Hahn MG, Western TL, Haughn GW, Samuels AL (2008) Analysis of the Golgi apparatus in Arabidopsis seed coat during polarized secretion of pectin-rich mucilage. Plant Cell 20:1623–1638

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Vaughn .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vaughn, K. (2013). Cell Walls and Golgi. In: Immunocytochemistry of Plant Cells. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6061-5_4

Download citation

Publish with us

Policies and ethics