Skip to main content
Log in

Immunocytochemical detection of lignin-related epitopes in cell walls in bryophytes and the charalean alga Nitella

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Lignins are complex phenolic heteropolymers present in xylem and sclerenchyma cell walls in tracheophytes. The occurrence of lignin-like polymers in bryophytes is controversial. In this study two polyclonal antibodies against homoguaiacyl (G) and guaiacyl/syringyl (GS) synthetic lignin-like polymers that selectively labelled lignified cell walls in tracheophytes also bound to cell walls in bryophytes, the GS antibody usually giving a stronger labelling than the G antibody. In contrast to tracheophytes, the antibody binding in liverworts and mosses was not tissue-specific. In the hornworts Megaceros flagellaris and M. fuegiensis the pseudoelaters and spores were labelled more intensely than the other cell types with the GS antibody. The cell walls in Nitella were labelled with both antibodies but no binding was observed in Coleochaete. The results suggest that the ability to incorporate G or GS moieties in cell walls is a plesiomorphy (primitive character) of the land plant clade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bateman RM, Crane PR, DiMichele WA, Kenrick PR, Rowe NP, Speck T and Stein WE (1998). Early evolution of land plants: phylogeny, physiology and ecology of the primary terrestrial radiation. Annual Rev Ecol Syst 29: 263–292

    Article  Google Scholar 

  • Boyce CK, Cody GD, Fogel ML, Hazen RM, Alexander CMOD and Knoll AH (2003). Chemical evidence for cell wall lignification and the evolution of tracheids in early Devonian plants. Int J Pl Sci 164: 691–702

    Article  CAS  Google Scholar 

  • Carafa A, Duckett JG, Knox JP and Ligrone R (2005). Distribution of cell-wall xylans in bryophytes and tracheophytes: new insights into basal relationships of land plants. New Phytol 168: 231–240

    Article  PubMed  CAS  Google Scholar 

  • Delwiche CF, Graham LE and Thomson N (1989). Lignin-like compounds and sporopollenin in Coleochaete, an algal model for land plant ancestry. Science 245: 399–401

    Article  PubMed  CAS  Google Scholar 

  • Dombrovska O and Qiu YL (2004). Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications. Molec Phylogenet Evol 32: 246–263

    Article  PubMed  CAS  Google Scholar 

  • Donaldson LA (2001). Lignin and lignin topochemistry, an ultrastructural view. Phytochemistry 57: 859–873

    Article  PubMed  CAS  Google Scholar 

  • Edelmann HG, Neinhuis C, Jarvis M, Evans B, Fisher E and Barthlott W (1998). Ultrastructure and chemistry of the cell wall of the moss Rhacocarpus purpurascens (Rhacocarpaceae): a puzzling architecture among plants. Planta 206: 315–321

    Article  CAS  Google Scholar 

  • Erikson M and Miksche GE (1974). On the occurrence of lignin or polyphenols in some mosses and liverworts. Phytochemistry 13: 2295–2299

    Article  Google Scholar 

  • Gómez Ros LV, Gabaldón C, Pomar F, Merino F, Pedreño MA and Ros Barceló A (2007). Structural motifs of syringyl peroxidases predate not only the gymnosperm-angiosperm divergence but also the radiation of tracheophytes. New Phytol 173: 63–78

    Article  PubMed  CAS  Google Scholar 

  • Groth-Malonek M, Pruchner D, Grewe F and Knoop V (2005). Ancestors of trans-splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants. Molec Biol Evol 22: 117–125

    Article  PubMed  CAS  Google Scholar 

  • Hébant C (1977) The conducting tissues of bryophytes. Bryophytorum Bibliotheca, vol. 10. J Cramer, Vaduz, Lichtenstein

  • Hepler PK, Fosket DE and Newcomb EH (1970). Lignification during secondary wall formation in Coleus: an electron microscopic study. Amer J Bot 57: 85–96

    Article  Google Scholar 

  • Hemsley AR (2001). Comparison of in vitro decomposition of bryophytic and tracheophytic plant material. Bot J Linn Soc 137: 375–384

    Article  Google Scholar 

  • Iiyama K, Lam TBT and Stone BA (1994). Covalent cross-links in the cell wall. Pl Physiol 104: 315–320

    CAS  Google Scholar 

  • Jin Z, Matsumoto Y, Tange T, Akiyama T, Higuchi M, Ishii T and Iiyama K (2005). Proof of the presence of guaiacyl-syringyl lignin in Selaginella tamariscina. J Wood Sci 51: 424–426

    Article  CAS  Google Scholar 

  • Joseleau JP and Ruel K (1997). Study of lignification by noninvasive techniques in growing maize internodes. Pl Physiol 114: 1123–1133

    Article  CAS  Google Scholar 

  • Joseleau JP, Faix O, Kuroda KI and Ruel K (2004). A polyclonal antibody directed against syringylpropane epitopes of native lignins. C R Biologies 327: 809–815

    Article  PubMed  CAS  Google Scholar 

  • Karol KG, McCourt RM, Cimino MT and Delwiche CF (2001). The closest living relatives of land plants. Science 294: 2351–2353

    Article  PubMed  CAS  Google Scholar 

  • Kodner RB and Graham LE (2001). High-temperature, acid-hydrolyzed remains of Polytrichum (Musci, Polytrichaceae) resemble enigmatic silurian-devonian tubular microfossils. Amer J Bot 88: 462–466

    Article  Google Scholar 

  • Krishnamurthy KV (1999). Methods in cell wall cytochemistry. CRC Press, Boca Raton, Florida, USA

    Google Scholar 

  • Lewis DH (1980). Boron, lignification and the origin of vascular plants – a unified hypothesis. New Phytol 80: 209–229

    Article  Google Scholar 

  • Lewis NG, Davin LB, Sarkanene S (1999) The nature and function of lignins. In: Barton DHR, Nakanishi K, Meth-Cohn O (eds) Comprehensive natural products chemistry, vol. 3, Carbohydrates and their derivatives including tannins, cellulose and related lignins. Elsevier Science, Oxford, UK, pp 617–745

  • Ligrone R, Vaughn KC, Renzaglia KS, Knox JP and Duckett JG (2002). Diversity in the distribution of polysaccharide and glycoprotein epitopes in the cell walls of bryophytes: new evidence for the multiple evolution of water-conducting cells. New Phytol 156: 491–508

    Article  CAS  Google Scholar 

  • Logan KY and Thomas BA (1985). Distribution of lignin derivatives in plants. New Phytol 99: 571–585

    Article  CAS  Google Scholar 

  • Miksche GE and Yasuda S (1978). Lignin of giant mosses and some related species. Phytochemistry 17: 503–504

    Article  CAS  Google Scholar 

  • Mues R (1990). The significance of flavonoids for the classification of bryophyte taxa at different taxonomic rank. In: Zinsmeister, HD and Mues, R (eds) Bryophytes. Their chemistry and chemical taxonomy, pp 421–435. Clarendon Press, Oxford, UK

    Google Scholar 

  • Newton AE, Cox CJ, Duckett JG, Wheeler JA, Goffinet B, Hedderson TAJ and Mishler BD (2000). Evolution of the major moss lineages: phylogenetic analyses based on multiple gene sequences and morphology. Bryologist 103: 187–211

    Article  Google Scholar 

  • Nimz VHH and Tutschek ER (1977). Kohlenstoff-13-NMR-Spektren von Ligninen.7. Zur Frage des Ligningehaltes von Moosen (Sphagnum magellanicum Brid). Holzforschung 31: 101–107

    Article  CAS  Google Scholar 

  • Pomar F, Merino F and Ros Barceló A (2002). O-4-linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol-HCl) reaction. Protoplasma 220: 17–28

    Article  PubMed  CAS  Google Scholar 

  • Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS and Sipes SD (2001). Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409: 618–622

    Article  PubMed  CAS  Google Scholar 

  • Qiu YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, Dombrowska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA, Taylor DW, Testa CM, Ambros M, Crandall-Stotler B, Duff RJ, Stech M, Frey W, Quandt D and Davis CC (2006). The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103: 15511–15516

    Article  PubMed  CAS  Google Scholar 

  • Renzaglia KS, Schuette S, Duff RJ, Ligrone R, Shaw AJ, Mishler BD and Duckett JG (2007). Bryophyte phylogeny: advancing the molecular and morphological frontiers. Bryologist 110: 179–213

    Article  Google Scholar 

  • Ros Barceló A (1997). Lignification in plant cell walls. Int Rev Cytol 176: 87–132

    Article  PubMed  Google Scholar 

  • Ruel K, Faix O and Joseleau JP (1994). New immunogold probes for studying the distribution of the different lignin types during plant cell wall biogenesis. J Trace Microprobe Tech 12: 247–265

    CAS  Google Scholar 

  • Ruel K, Montiel MD, Goujon T, Jouanin L, Burlat V and Joseleau IP (2001). Interrelation between lignin deposition and polysaccharide matrices during the assembly of plant cell walls. Pl Biol 4: 2–8

    Article  Google Scholar 

  • Scheffer RA and Verhoeven JTA (2001). Decomposition of Carex and Sphagnum litter in two mesotrophic fens differing in dominant plant species. Oikos 92: 44–54

    Article  Google Scholar 

  • Scheirer DC (1980). Differentiation of bryophyte conducting tissues: structure and histochemistry. Bull Torrey Bot Club 107: 298–307

    Article  Google Scholar 

  • Siegel SM (1969). Evidence for the presence of lignin in moss gametophores. Amer J Bot 56: 175–179

    Article  CAS  Google Scholar 

  • Waters ER (2003). Molecular adaptation and the origin of land plant. Molec Phylogenet Evol 29: 456–463

    Article  PubMed  CAS  Google Scholar 

  • Willats WGT and Knox JP (2003). Molecules in context: probes for cell wall analysis. In: Rose, JKC (eds) The plant cell wall, pp 92–110. CRC Press, Boca Raton, USA

    Google Scholar 

  • Wilson MA, Sawyer J, Hatcher PG and Lerch HE (1989). 1-3-5-hydroxybenzene structures in mosses. Phytochemistry 28: 1395–1400

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ligrone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ligrone, R., Carafa, A., Duckett, J.G. et al. Immunocytochemical detection of lignin-related epitopes in cell walls in bryophytes and the charalean alga Nitella . Plant Syst Evol 270, 257–272 (2008). https://doi.org/10.1007/s00606-007-0617-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0617-z

Keywords

Navigation