Skip to main content

Applications of Nanoparticle-Containing Plasmas for High-Order Harmonic Generation of Laser Radiation

  • Chapter
  • First Online:
Nonlinear Optical Properties of Materials

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 174))

  • 2572 Accesses

Abstract

The use of nanoparticles for efficient conversion of the wavelength of ultrashort laser toward the deep UV spectral range through harmonic generation is an attractive application of cluster-containing plasmas. Note that earlier observations of HHG in nanoparticles were limited by using the exotic gas clusters formed during fast cooling of atomic flow from the gas jets 1-4. One can assume the difficulties in definition of the structure of such clusters and the ratio between nanoparticles and atoms/ions in the gas flow. The characterization of gas phase cluster production was currently improved using the sophisticated techniques (e.g., a control of nanoparticle mass and spatial distribution, see the review 5). In the meantime, the plasma nanoparticle HHG has demonstrated some advantages over gas cluster HHG 6. The application of commercially available nanopowders allowed for precisely defining the sizes and structure of these clusters in the plume. The laser ablation technique made possible the predictable manipulation of plasma characteristics, which led to the creation of laser plumes containing mainly nanoparticles with known spatial structure. The latter allows the application of such plumes in nonlinear optics, X-ray emission of clusters, deposition of nanoparticles with fixed parameters on the substrates for semiconductor industry, production of nanostructured and nanocomposite films, etc.

We analyse the studies of the conditions when the plasma producing on the surface of targets contains the nanoparticles, clusters, and nanotubes. The cluster-containing plasma plumes proved to be the effective media for the high-order harmonic generation of femtosecond laser pulses. We describe the HHG in various plasmas containing nanoparticles, clusters, and nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.D. Donnelly, T. Ditmire, K. Neuman, M.D. Pery, R.W. Falcone, Phys. Rev. Lett. 76, 2472 (1996)

    Article  ADS  Google Scholar 

  2. J.W.G. Tisch, T. Ditmire, D.J. Fraser, N. Hay, M.B. Mason, E. Springate, J.P. Marangos, M.H.R. Hutchinson, J. Phys. B 30, L709 (1997)

    Google Scholar 

  3. C. Vozzi, M. Nisoli, J.-P. Caumes, G. Sansone, S. Stagira, S. De Silvestri, M. Vecchiocattivi, D. Bassi, M. Pascolini, L. Poletto, P. Villoresi, G. Tondello, Appl. Phys. Lett. 86, 111121 (2005)

    Google Scholar 

  4. C.-H. Pai, C.C. Kuo, M.-W. Lin, J. Wang, S.-Y. Chen, J.-Y. Lin, Opt. Lett. 31, 984 (2006)

    Article  ADS  Google Scholar 

  5. K. Wegner, P. Piseri, H.V. Tafreshi, P. Milani, J. Phys. D: Appl. Phys. 39, R439 (2006)

    Article  ADS  Google Scholar 

  6. R.A. Ganeev, Laser Phys. 18, 1009 (2008)

    Article  ADS  Google Scholar 

  7. R.A. Ganeev, L.B. Elouga Bom, J. Abdul-Hadi, M.C.H. Wong, J.P. Brichta, V.R. Bhardwaj, T. Ozaki, Phys. Rev. Lett. 102, 013903 (2009)

    Article  ADS  Google Scholar 

  8. R.A. Ganeev, Phys. Usp. 52, 55 (2009)

    Article  ADS  Google Scholar 

  9. R.A. Ganeev, J. Phys. B: At. Mol. Opt. Phys. 40, R213 (2007)

    Article  ADS  Google Scholar 

  10. H. Singhal, R.A. Ganeev, P.A. Naik, J.A. Chakera, U. Chakravarty, H.S. Vora, A.K. Srivastava, C. Mukherjee, C.P. Navathe, S.K. Deb, P.D. Gupta, Phys. Rev. A 82, 043821 (2010)

    Article  ADS  Google Scholar 

  11. H. Singhal, R.A. Ganeev, P.A. Naik, A.K. Srivastava, A. Singh, R. Chari, R.A. Khan, J.A. Chakera, P.D. Gupta, J. Phys. B: At. Mol. Opt. Phys. 43, 025603 (2010)

    Article  ADS  Google Scholar 

  12. R.A. Ganeev, L.B. Elouga Bom, M.C.H. Wong, J.-P. Brichta, V.R. Bhardwaj, P.V. Redkin, T. Ozaki, Phys. Rev. A 80, 043808 (2009)

    Article  ADS  Google Scholar 

  13. R.A. Ganeev, H. Singhal, P.A. Naik, J.A. Chakera, A.K. Srivastava, T.S. Dhami, M.P. Joshi, P.D. Gupta, J. Appl. Phys. 106, 103103 (2009)

    Article  ADS  Google Scholar 

  14. R.A. Ganeev, H. Singhal, P.A. Naik, J.A. Chakera, A.K. Srivastava, T.S. Dhami, M.P. Joshi, P.D. Gupta, Appl. Phys. B 100, 581 (2010)

    Article  ADS  Google Scholar 

  15. R.A. Ganeev, M. Baba, H. Kuroda, G.S. Boltaev, R.I. Tugushev, T. Usmanov, Eur. Phys. J. D 64, 109 (2011)

    Article  ADS  Google Scholar 

  16. R.A. Ganeev, Laser Phys. 21, 25 (2011)

    Article  ADS  Google Scholar 

  17. R.A. Ganeev, H. Singhal, P.A. Naik, J.A. Chakera, M. Tayyb, A.K. Srivastava, T.S. Dhami, M.P. Joshi, A. Singh, R. Chari, S.R. Kumbhare, R.P. Kushwaha, R.A. Khan, P.D. Gupta, Opt. Spectrosc. 108, 787 (2010)

    Article  ADS  Google Scholar 

  18. H.B. Liao, R.F. Xiao, J.S. Fu, G.K.L. Wong, Appl. Phys. B 65, 673 (1997)

    Article  Google Scholar 

  19. B. Shim, G. Hays, R. Zgadzaj, T. Ditmire, M.C. Downer, Phys. Rev. Lett. 98, 123902 (2007)

    Article  ADS  Google Scholar 

  20. S.X. Hu, Z.Z. Xu, Appl. Phys. Lett. 71, 2605 (1997)

    Article  ADS  Google Scholar 

  21. T. Tajima, Y. Kishimoto, M.C. Downer, Phys. Plasmas 6, 3759 (1999)

    Article  ADS  Google Scholar 

  22. J.W.G. Tisch, Phys. Rev. A 62, 041802 (2000)

    Article  ADS  Google Scholar 

  23. S.V. Fomichev, D.F. Zaretsky, D. Bauer, W. Becker, Phys. Rev. A 71, 013201 (2005)

    Article  ADS  Google Scholar 

  24. V. Véniard, R. Taïeb, M. Maquet, Phys. Rev. A 65, 013202 (2001)

    Article  Google Scholar 

  25. R.A. Ganeev, L.B. Elouga Bom, T. Ozaki, J. Phys. B: At. Mol. Opt. Phys. 42, 055402 (2009)

    Article  ADS  Google Scholar 

  26. M. Kundu, S. V. Popruzhenko, D. Bauer, Phys. Rev. A 76, 033201 (2007)

    Google Scholar 

  27. R.A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, H. Kuroda, J. Appl. Phys. 103, 063102 (2008)

    Article  ADS  Google Scholar 

  28. R.A. Ganeev, L.B. Elouga Bom, T. Ozaki, J. Appl. Phys. 106, 023104 (2009)

    Article  ADS  Google Scholar 

  29. G.S. Metraux, C.A. Mirkin, Advanced Mater. 17, 412 (2005)

    Article  Google Scholar 

  30. R.A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, H. Kuroda, J. Phys. B: At. Mol. Opt. Phys. 41, 045603 (2008)

    Article  ADS  Google Scholar 

  31. R.A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, H. Kuroda, J. Opt. Soc. Am. B 25, 325 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid A. Ganeev .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ganeev, R.A. (2013). Applications of Nanoparticle-Containing Plasmas for High-Order Harmonic Generation of Laser Radiation. In: Nonlinear Optical Properties of Materials. Springer Series in Optical Sciences, vol 174. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6022-6_6

Download citation

Publish with us

Policies and ethics