Skip to main content

Head and Neck Carcinogenesis a Product of Complex Evolutionary Forces

  • Chapter
  • First Online:
Head & Neck Cancer: Current Perspectives, Advances, and Challenges
  • 2969 Accesses

Abstract

This chapter explores carcinogenesis of the head and neck as a product of biologic forces present in micro and macroenviroments. We attempt to present dynamic complex characteristics of head and neck tissues in a framework that explores ecologic selection as a means to understand and explain the risk for cancer. We contend problems with diagnosis and treatment responses results from an inattention to environmental interactions and their impact upon malignant transformation and reversal to a normal physiologic state. Furthermore an emphasis is placed on Darwinism and ecologic selection that determine functional roles and activities of keratinocytes derived from the proliferative stratum of mucosa in response to changes in head and neck environments. In addition, we consider unique features; such as, microbiome, fluids (e.g., saliva, transudate, exudates), epithelial mucosa biology, and immune responses to provide a broader picture for the influence of evolutionary, chemical, and physiologic changes upon head and neck cells and tissues during carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HNSCC:

head and neck squamous carcinoma

OSCC:

oral squamous cell carcinoma

ST:

smokeless tobacco

PAH:

polycyclic aromatic hydrocarbons

TSNA:

tobacco specific nitrosamines

HPV:

human papilloma virus

HHV:

herpes virus

$NQO:

4-Nitroquinoline-1-oxide

MDR:

drug resistant gene

ABC:

ATP-binding protein cassette

XRE:

xenobiotic responsive element

ADH:

alcohol dehydrogenase

ALDH:

aldehyde dehydrogenase

CYP450 :

cytochrome P450

GST:

glutathione-S-transferase

Rb:

retinoblastoma

NF-kB:

nuclear factor kappa-light-chain-enhancer of activated B cells

c-fos:

cell Finkel osteogenic gene

c-jun:

cell JNK related gene

AP-1:

activator protein-1

ATF:

activator transcription factor

JDP:

AP-1 repressor protein

IP3:

Inositol-1,4,5 trisphosphate

MAPK:

mitogen activator protein kinase

E2F:

elongation factor 2

PCNA:

proliferation cell nuclear antigen

E6/E7:

early HPV proteins 6 and 7

NOTCH1:

Notch homolog 1, translocation-associated (Drosophila)

TP63:

tumor protein 63

IF6:

Interferon regulatory factor 6

ARF:

Alternate reading frame of INK4a/ARF locus (CDKN2A)

Nanog:

homeoprotein embryonic stem cell transcription factor

AKT:

Protein Kinase B (PKB), is a serine / threonine protein kinase

PTEN:

Phosphatase and tensin homolog

mTor:

mammalian target of rapamycin

CpG:

cytosine guanine phosphodiesterase islands

TTP:

mpRNA decay factor tristetraprolin

HWE:

Hardy-Weinberg equilibrium

RR:

relative risk

CI:

confidence interval

SNP:

single polymorphic polymorphism

ETOH:

ethyl alcohol

AA:

acetaldehyde

IgA, IgG, IgM:

immunoglobulins A, G, and M

References

  1. Feller L, Wood NH, Khammissa AG (2010) Human papilloma virus-medicated carcinogenesis and HPV – associated oral and oropharyngeal squamous cell carcinoma. Part 1: Human papilloma virus-medicated carcinogenesis. Head Neck Med 6:14, 5 pp

    Google Scholar 

  2. Feller L, Wood NH, Khammissa AG (2010) Human papilloma virus-medicated carcinogenesis and HPV – associated oral and oropharyngeal squamous cell carcinoma. Part 2: Human papillomavirus associated oral and oropharyngeal squamous cell carcinoma. Head Face Med 6:15, 5 pp

    Article  PubMed  CAS  Google Scholar 

  3. De Almeida PDV, Gregio AMT, Machado MAN, De Lima AAS, Azevedo LR (2008) Saliva composition and functions: a comprehensive review. J Contemp Dent Pract 9(3):72–80

    Google Scholar 

  4. Farnaud SJC, Kosti O, Getting SJ, Renshaw D (2010) Saliva: physiology and diagnostic potential in health and disease. ScientificWorld J 10:434–456

    Article  CAS  Google Scholar 

  5. Eliasson L, Carlen A (2010) An update on minor salivary secretions. Eur J Oral Sci 118:435–442

    Article  PubMed  Google Scholar 

  6. Hamada T, Kawashima M, Watamabe H, Tagami J, Senpuku H (2004) Molecular interactions of surface protein peptides of Streptococcus gordonii with human salivary components. Infect Immun 72(8):4819–4826

    Article  PubMed  CAS  Google Scholar 

  7. Rostand KS, Esko JD (1997) Microbial adherence to and invasion through proteoglycans. Infect Immun 65(1):1–8

    PubMed  CAS  Google Scholar 

  8. Lijemark WF, Bloomquist C (1996) Human oral microbial ecology and dental caries and periodontal disease. CROBM 7(2):180–198

    Article  Google Scholar 

  9. Whittaker CJ, Klier CM, Kolenbrander PE (1996) Mechanisms of adhesion by oral bacteria. Annu Rev Microbiol 50:513–552

    Article  PubMed  CAS  Google Scholar 

  10. Kesimer M, Kilic N, Mehrotra R, Thronton DJ, Sheehan JK (2009) Identification of salivary mucin MUC7 binding proteins from Streptococcus gordonii. BMC Microbiol 9:163–173

    Article  PubMed  CAS  Google Scholar 

  11. Offner GD, Troxler RF (2000) Heterogeneity of high-molecular-weight. Human salivary mucin. Adv Dent Res 14:69–75

    Article  PubMed  CAS  Google Scholar 

  12. Kim KC (2012) Role of epithelial mucins during airway infection. Pulm Pharmacol Ther 2012:1–5

    Google Scholar 

  13. Siqueira WL, Helmerhorst EJ, Zhang W, Salih E, Oppenheim FG (2007) Acquired enamel pellicle and its potential role in oral diagnostics. Ann NY Acad Sci 1098:504–509

    Article  PubMed  CAS  Google Scholar 

  14. Gracia-Godoy F, Hicks J (2008) Maintaining the integrity of the enamel surface: the role of dental biofilm, saliva and preventive agents in enamel demineralization and remineralization. J Am Dent Assoc 139:25S–34S

    Google Scholar 

  15. Wallis R, Mitchell DA, Schmid R, Schwaeble WJ, Keeble AH (2010) Paths reunited: initiation of the classical and lectin pathways of complement activation. Immunobiology 215(1):1–11

    Article  PubMed  CAS  Google Scholar 

  16. Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117(Pt 25):5965–5973

    Article  PubMed  CAS  Google Scholar 

  17. Jameson MJ, Beckler AD, Taniguchi LE, Allak A, Vanwagner LB, Lee NG, Thomsen WC, Hubbard MA, Thomas CY (2011) Activation of the insulin-like growth factor-1 receptor induces resistance to epidermal growth factor receptor antagonism in head and neck squamous carcinoma cells. Mol Cancer Ther 10(11):2124–2134

    Article  PubMed  CAS  Google Scholar 

  18. Kalyankrishna S, Grandis JR (2006) Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol 24(17):2666–2672

    Article  PubMed  CAS  Google Scholar 

  19. Zhang R, Xie X (2012) Tools for GPCR drug discovery. Acta Pharmacol Sin 33(3):372–384. doi:10.1038/aps.2011.173

    Article  PubMed  CAS  Google Scholar 

  20. Mayati A, Levoin N, Paris H, N’diaye M, Courtois A, Uriac P, Lagadic-Gossmann D, Fardel O, Le Ferrec E (2011) Induction of intracellular calcium concentration by environmental benzo(a)pyrene involves a β2 adrenergic receptor/adenylyl cyclase/Epac-1/IP3 pathway in endothelial cells. J Biol Chem 287(6):4041–4052

    Article  PubMed  CAS  Google Scholar 

  21. Ertekin C (2011) Voluntary versus spontaneous swallowing in man. Dysphagia 26(2):183–192

    Article  PubMed  Google Scholar 

  22. Matsuo R (2000) Role of saliva in the maintenance of taste sensitivity. Crit Rev Oral Biol Med 11(2):216–229

    Article  PubMed  CAS  Google Scholar 

  23. Fierer N, Lennon JT (2011) The generation and maintenance of diversity in microbial communities. Am J Bot 98(3):439–448

    Article  PubMed  Google Scholar 

  24. Zaura E, Keijser BJF, Huse SM, Crieland W (2009) Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 9:259–271

    Article  PubMed  CAS  Google Scholar 

  25. Avial M, Ojcius DM, Yilmaz O (2009) The oral microbiota: living with a permanent guest. DNA Cell Biol 28(8):405–411

    Article  CAS  Google Scholar 

  26. Filoche S, Wong L, Sissons CH (2010) Oral biofilms: emerging concepts in microbial ecology. J Dent Res 89(1):8–18

    Article  PubMed  CAS  Google Scholar 

  27. Monroe D (2007) Looking for clinks in the armor of bacterial biofilms. PLOS Biol 5(11):2458–2461

    Article  CAS  Google Scholar 

  28. Parahitiyawa NB, Scully C, Leung WK, Yam WC, Jin LJ, Samaranayake LP (2010) Exploring the oral bacterial flora: current status and future directions. Oral Dis 16:136–145

    Article  PubMed  CAS  Google Scholar 

  29. Zijnge V, van Leeuwen MBM, Degener JE, Abbas F, Thurnheer T et al (2010) Oral biofilm architecture on natural teeth. PLoS One 5(2):e9321. doi:10.1371/journal.pone.0009321

    Article  PubMed  CAS  Google Scholar 

  30. Hojo K, Ohishima T, Maeda N (2009) Bacterial interactions in dental biofilm development. J Dent Res 88:982–990

    Article  PubMed  CAS  Google Scholar 

  31. Tomar SL, Giovino GA (1998) Incidence and predicators of smokeless tobacco use among US youth. Am J Public Health 88(1):20–26

    Article  PubMed  CAS  Google Scholar 

  32. Nelson DE, Mowery P, Tomar S, Marcus S, Giovino G, Zhao L (2006) Trends in smokeless tobacco use among adults and adolescents in the United States. Am J Public Health 96(5):897–905

    Article  PubMed  Google Scholar 

  33. Kreimer AR, Clifford GM, Boyle P, Franceschi S (2005) Cancer epidemiol. Biomark Prev 14(2):467–475

    Article  CAS  Google Scholar 

  34. Chaturvedi AK, Engels EA, Anderson WF, Gillison ML (2008) Incidence trends for human papillomavirus-related and –unrelated oral squamous cell carcinoma in the United States. J Clin Oncol 26:612–619

    Article  PubMed  Google Scholar 

  35. Termine N, Panzaarella V, Falaschini S, Russo A et al (2008) HPV in oral squamous cell carcinoma vs head and neck squamous cell carcinoma biopsies a meta-analysis (1988–2007). Ann Oncol 19:1681–1690

    Article  PubMed  CAS  Google Scholar 

  36. Gillison ML, D’Souza G, Westra W, Sugar E, Xiao W, Begum S, Viscidi R (2008) Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. J Natl Cancer Inst 100:407–420

    Article  PubMed  Google Scholar 

  37. Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH et al (2000) Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 92:709–720

    Article  PubMed  CAS  Google Scholar 

  38. Dayyani F, Etzel CJ, Liu M, Ho CH, Lippman SM, Tsao AS (2010) Meta-analysis of the impact of human papillomavirus on cancer risk and overall survival in head and neck squamous cell carcinoma (HNSCC). Head Neck Oncol 2:15–26

    Article  PubMed  Google Scholar 

  39. Hashibe M, Ford DE, Zhang ZF (2002) Marijuana smoking and head and neck cancer. J Clin Parmacol 42:103S–107S

    CAS  Google Scholar 

  40. Zhang ZF, Morgenstern H, Spitz MR (1999) Marijuana use and increased risk squamous cell carcinoma of the head and neck. Cancer Epidemiol Biomak Prev 8(12):1071–1078

    CAS  Google Scholar 

  41. Keene K, Johnson RB (1999) The effect of nicotine on growth of Streptococcus mutans. Miss Dent Assoc J 55(4):38–39

    PubMed  CAS  Google Scholar 

  42. Rosenquist K, Wennerberg J, Schildt EB, Bladström A, Göran Hansson B, Andersson G (2005) Oral status, oral infections and some lifestyle factors as risk factors for oral and oropharyngeal squamous cell carcinoma. A population-based case-control study in southern Sweden. Acta Otolaryngol 125(12):1327–1336

    Article  PubMed  Google Scholar 

  43. Meurman JH, Uittamo J (2008) Oral micro-organisms in the etiology of cancer. Acta Odontol Scand 66(6):321–326

    Article  PubMed  Google Scholar 

  44. Pindborg JJ, Reibel J, Roed-Peterson B, Mehta FS (1980) Tobacco-induced changes in oral leukoplakic epithelium. Cancer 45(9):2330–2336

    Article  PubMed  CAS  Google Scholar 

  45. Haftek M, Callejon S, Sandjeu Y, Padois K, Falson F, Pirot F, Portes P, Demarne F, Jannin V (2011) Compartmentalization of the human stratum corneum by persistent tight junction-like structures. Exp Dermatol 20(8):617–621

    Article  PubMed  CAS  Google Scholar 

  46. Brandner JM, Kief S, Grund C, Rendl M, Houdek P, Kuhn C, Tschachler E, Franke WW, Moll I (2002) Organization and formation of the tight junction system in human epidermis and cultured keratinocytes. Eur J Cell Biol 81(5):253–263

    Article  PubMed  CAS  Google Scholar 

  47. Ye P, Yu H, Simonian M, Hunter N (2011) Ligation of CD24 expressed by oral epithelial cells induces kinase dependent decrease in paracellular permeability mediated by tight junction proteins. Biochem Biophys Res Commun 412(1):165–169

    Article  PubMed  CAS  Google Scholar 

  48. Kines RC, Thompson CD, Lowy DR, Schiller JT, Day PM (2009) The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci U S A 106(48):20458–20463

    Article  PubMed  CAS  Google Scholar 

  49. Schwartz JL (2011) Chapter 7: Poly-microbial interactions with human papilloma virus leading to increased risk for head and neck squamous cell carcinoma and oral squamous cell carcinoma. In: Radosevich JA (ed) HPV and cancer. Springer, New York

    Google Scholar 

  50. Schwartz J, Pavlova S, Kolokythas A, Lugakingira M, Tao L, Miloro M (2011) Streptococci-human papilloma virus interaction with ethanol exposure leads to keratinocyte damage. J Oral Maxillofac Surg 70(8):1867–1879

    Article  PubMed  Google Scholar 

  51. Allen CT, Lewis JS Jr, El-Mofty SK, Haughey BH, Nussenbaum B (2010) Human papillomavirus and oropharynx cancer: biology, detection and clinical implications. Laryngoscope 120(9):1756–1772

    Article  PubMed  Google Scholar 

  52. Li G, Sturgis EM (2006) The role of human papillomavirus in squamous carcinoma of the head and neck. Curr Oncol Rep 8(2):130–139

    Article  PubMed  Google Scholar 

  53. Hennessey PT, Westra WH, Califano JA (2009) Human papillomavirus and head and neck squamous cell carcinoma: recent evidence and clinical implications. J Dent Res 88(4):300–306

    Article  PubMed  CAS  Google Scholar 

  54. Cho NH, Kim YT, Kim JW (2002) Alteration of cell cycle in cervical tumor associated with human papillomavirus: cyclin-dependent kinase inhibitors. Yonsei Med J 43(6):722–728

    PubMed  CAS  Google Scholar 

  55. Zushi Y, Narisawa-Saito M, Noguchi K, Yoshimatsu Y, Yugawa T, Egawa N, Fujita M, Urade M, Kiyono T (2011) An in vitro multistep carcinogenesis model for both HPV-positive and -negative human oral squamous cell carcinomas. Am J Cancer Res 1(7):869–881

    PubMed  CAS  Google Scholar 

  56. Smeets SJ, van der Plas M, Schaaij-Visser TB, van Veen EA, van Meerloo J, Braakhuis BJ, Steenbergen RD, Brakenhoff RH (2011) Immortalization of oral keratinocytes by functional inactivation of the p53 and pRb pathways. Int J Cancer 128(7):1596–1605

    Article  PubMed  CAS  Google Scholar 

  57. Rampias T, Sasaki C, Weinberger P, Psyrri A (2009) E6 and e7 gene silencing and transformed phenotype of human papillomavirus 16-positive oropharyngeal cancer cells. J Natl Cancer Inst 101(6):412–423

    Article  PubMed  CAS  Google Scholar 

  58. El-Naggar AK, Westra WH (2011) p16 expression as a surrogate marker for HPV-related oropharyngeal carcinoma: a guide for interpretative relevance and consistency. Head Neck 34(4):459–461. doi:10.1002/hed.21974

    Article  PubMed  Google Scholar 

  59. Robinson M, Sloan P, Shaw R (2010) Refining the diagnosis of oropharyngeal squamous cell carcinoma using human papillomavirus testing. Oral Oncol 46(7):492–496

    Article  PubMed  Google Scholar 

  60. Petti S (2009) Lifestyle risk factors for oral cancer. Oral Oncol 45(4–5):340–350

    Article  PubMed  Google Scholar 

  61. Petersen PE (2009) Oral cancer prevention and control–the approach of the World Health Organization. Oral Oncol 45(4–5):454–460

    Article  PubMed  Google Scholar 

  62. Reichart PA (2001) Identification of risk groups for oral precancer and cancer and preventive measures. Clin Oral Investig 5(4):207–213

    Article  PubMed  CAS  Google Scholar 

  63. Rodu B, Jansson C (2004) Smokeless tobacco and oral cancer: a review of the risks and determinants. CROBM 15:252–263

    Article  Google Scholar 

  64. Geer RO, Poulson TC, Boone ME, Lindenmuth JE, Crosby L (1986) Smokeless tobacco-associated oral changes in juvenile, adult, and geriatric patients: clinical and histomorphologic features. Gerodontics 2:87–98

    Google Scholar 

  65. Greer RO, Eversole LR, Crosby LK (1990) Detection of human papillomavirus-genomic DNA in oral epithelial dysplasias, oral smokeless tobacco-associated leukoplakias, and epithelial malignancies. J Oral Maxillofac Surg 48(11):1201–1205

    Article  PubMed  Google Scholar 

  66. Fornatora M, Jones AC, Kerpel S, Freedman P (1996) Human papillomavirus-associated oral epithelial dysplasia (koilocytic dysplasia): an entity of unknown biologic potential. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 82:47–56

    Article  PubMed  CAS  Google Scholar 

  67. Rodu B, Cole P (2002) Smokeless tobacco use and cancer of the upper respiratory tract. Oral Surg 93:511–515

    Google Scholar 

  68. Oevestad IT, Janssen EA, Baak JP (2007) The effect of different DNA isolation methods on the outcome of high-risk HPV testing. Indian J Pathol Microbiol 50(4):733–739

    PubMed  Google Scholar 

  69. Zheng Y, Xia P, Zheng HC, Takahashi H, Masuda S, Takano Y (2010) The screening of viral risk factors in tongue and pharyngolaryngeal squamous carcinoma. Anticancer Res 30(4):1233–1238

    PubMed  CAS  Google Scholar 

  70. Schoop RAL, Noteborn MHM, de Baatenburg Jong RJ (2009) A mouse model for oral squamous cell carcinoma. J Mol Histol 40:177–181

    Article  PubMed  CAS  Google Scholar 

  71. Hawkins BL, Heniford BW, Ackermann DM, Leonberger M, Martinez SA, Hendler FJ (1994) 4NQO carcinogenesis: a mouse model of oral cavity squamous cell carcinoma. Head Neck 16(5):424–432

    Article  PubMed  CAS  Google Scholar 

  72. Kanojia D, Vaidya MM (2006) 4-Nitroquinoline-1-oxide induced experimental oral carcinogenesis. Oral Oncol 42(7):655–667

    Article  PubMed  CAS  Google Scholar 

  73. Nauta JM, Roodenburg JL, Nikkels PG, Witjes MJ, Vermey A (1995) Comparison of epithelial dysplasia–the 4NQO rat palate model and human oral mucosa. Int J Oral Maxillofac Surg 24(1 Pt 1):53–58

    Article  PubMed  CAS  Google Scholar 

  74. Nauta JM, Roodenburg JL, Nikkels PG, Witjes MJ, Vermey A (1996) Epithelial dysplasia and squamous cell carcinoma of the Wistar rat palatal mucosa: 4NQO model. Head Neck 18(5):441–449

    Article  PubMed  CAS  Google Scholar 

  75. Suzuki R, Kohno H, Suzui M, Yoshimi N, Tsuda H, Wakabayashi K, Tanaka T (2006) An animal model for the rapid induction of tongue neoplasms in human c-Ha-ras proto-oncogene transgenic rats by 4-nitroquinoline 1-oxide: its potential use for preclinical chemoprevention studies. Carcinogenesis 27(3):619–630

    Article  PubMed  CAS  Google Scholar 

  76. Tang XH, Knudsen B, Bemis D, Tickoo S, Gudas LJ (2004) Oral cavity and esophageal carcinogenesis modeled in carcinogen treated mice. Clin Cancer Res 10(1 Pt 1):301–313

    Article  PubMed  CAS  Google Scholar 

  77. Wallenius K, Lekholm U (1973) Oral cancer in rats induced by the water-soluble carcinogen 4-nitrochinoline N-oxide. Odontol Rev 2(1):39–48

    Google Scholar 

  78. Dontenwill W, Chevalier H, Harke H, Lafrenz U, Reckzeh G, Schneider B (1973) Investigations on the effects of chronic cigarette-smoke inhalation in syrian golden hamsters. J Natl Cancer Inst 51(6):1781

    PubMed  CAS  Google Scholar 

  79. Schwartz JL (2002) Chapter 8: The hamster buccal pouch oral carcinogenesis model. In: Teicher B (ed) Tumor models in cancer research. Humana Press, Totowa

    Google Scholar 

  80. Minamoto T, Mai M, Ronai M (1999) Environmental factors as regulators and effectors of multistep carcinogenesis. Carcinogenesis 20(4):519–527

    Article  PubMed  CAS  Google Scholar 

  81. Institute of Medicine (2012) Scientific standards for studies on modified rick tobacco products. The National Academies Press, Washington, D.C

    Google Scholar 

  82. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  83. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108

    Article  PubMed  Google Scholar 

  84. Mehta V, Yu GP, Shantz SP (2010) Population – based analysis of oral and oropharyngeal carcinoma: Changing trends of histopathologic differentiation, survival and patient demographics. Larynscope 120:2203–2212

    Article  Google Scholar 

  85. Koch WM, Lango M, Sewell D, Zahurak M, Sidransky D (1999) Head and neck cancer in nonsmokers: a distinct clinical and molecular entity. Larynscope 109:1544–1551

    Article  CAS  Google Scholar 

  86. Dahlstrom KR, Li G, Tortolero-Luna G, Wei Q, Sturgis EM (2010) Differences in history of sexual behavior between patients with oropharyneal squamous cell carcinoma and patients with squamous cell carcinoma at other head and neck sites. Head Neck 33(6):847–855. doi:10.1002/hed21550

    Article  PubMed  Google Scholar 

  87. Carins J (1998) Mutation and cancer: the antecedents to our studies of adaptive mutation. Genetics 148:1433–1440

    Google Scholar 

  88. Thierry F (2009) Transcriptional regulation of the papillomavirus oncogenes by cellular and viral transcription factors in cervical carcinoma. Virology 384(2):375–379

    Article  PubMed  CAS  Google Scholar 

  89. Badal V, Chuang LS, Tan EH, Badal S, Villa LL, Wheeler CM, Li BF, Bernard HU (2003) CpG methylation of human papillomavirus type 16 DNA in cervical cancer cell lines and in clinical specimens: genomic hypomethylation correlates with carcinogenic progression. J Virol 77(1):6227–6234

    Article  PubMed  Google Scholar 

  90. Kalantari M, Calleja-Macias IE, Tewari D, Hagmar B, Lie K, Barrera-Saldana HA, Wiley DJ, Bernard HU (2004) Conserved methylation patterns of human papillomavirus type 16 DNA in asymptomatic infection and cervical neoplasia. J Virol 78(23):12762–12772

    Article  PubMed  CAS  Google Scholar 

  91. Dewhirst FE, Chen T, Izard J, Paster B, Tanner ACR et al (2010) The human oral microbiome. J Bacteriol 192(19):50002–55017

    Article  CAS  Google Scholar 

  92. Sansonetti PJ (2011) To be or not to be a pathogen: that is the mucosally relevant question. Mucosal Immunol 4:8–14

    Article  PubMed  CAS  Google Scholar 

  93. Feng T, Elson CO (2011) Adaptive immunity in the host- microbiota dialog. Nature: Mucosal Immunol 4:15–21

    Article  CAS  Google Scholar 

  94. Walker DM (2004) Oral mucosal immunology: an overview. Ann Acad Med Singap 33(4):27S–30S

    Google Scholar 

  95. Beder LB, Gunduz M, Ouchida M, Fukushima K, Gunduz E, Ito S, Sakai A, Nagai N, Nishizaki K, Shimizu K (2003) Genome-wide analyses on loss of heterozygosity in head and neck squamous cell carcinomas. Lab Investig 83:99–105

    PubMed  Google Scholar 

  96. Cowan JM, Beckett MA, Ahmed-Swan S, Weichselbaum RR (1992) Cytogenetic evidence of the multistep origin of head and neck squamous cell carcinomas. J Natl Cancer Inst 84:793

    Article  PubMed  CAS  Google Scholar 

  97. Califano J, van der Riet P, Westra W et al (1996) Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res 56:2488

    PubMed  CAS  Google Scholar 

  98. Ha PK, Benoit NE, Yochem R et al (2003) A transcriptional progression model for head and neck cancer. Clin Cancer Res 9:3058

    PubMed  CAS  Google Scholar 

  99. Slaughter DP, Southwick HW, Smejkal W (1953) Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6:963

    Article  PubMed  CAS  Google Scholar 

  100. Partridge M, Emilion G, Pateromichelakis S et al (1997) Field cancerisation of the oral cavity: comparison of the spectrum of molecular alterations in cases presenting with both dysplastic and malignant lesions. Oral Oncol 33:332

    Article  PubMed  CAS  Google Scholar 

  101. Partridge M, Pateromichelakis S, Phillips E et al (2001) Profiling clonality and progression in multiple premalignant and malignant oral lesions identifies a subgroup of cases with a distinct presentation of squamous cell carcinoma. Clin Cancer Res 7:1860

    PubMed  CAS  Google Scholar 

  102. Bosatra A, Bussani R, Silvestri F (1997) From epithelial dysplasia to squamous carcinoma in the head and neck region: an epidemiological assessment. Acta Otolaryngol Suppl 527:47

    Article  PubMed  CAS  Google Scholar 

  103. Rosin MP, Cheng X, Poh C et al (2000) Use of allelic loss to predict malignant risk for low-grade oral epithelial dysplasia. Clin Cancer Res 6:357

    PubMed  CAS  Google Scholar 

  104. Hunt JL (2011) An update on molecular diagnostics of squamous and salivary gland tumors of the head and neck. Mol Head Neck 135:602–609

    Google Scholar 

  105. Kaye FJ (2006) Emerging biology of malignant salivary gland tumors offers new insights into the classification and treatment of mucoepidermoid cancer. Clin Cancer Res 12:3878–3881

    Article  PubMed  Google Scholar 

  106. Everson JW (2011) Salivary tumors. Periodontology 2000 57:150–159

    Article  Google Scholar 

  107. Cheuk W, Chan JKC (2007) Advances in salivary gland pathology. Histopathology 51:1–20

    Article  PubMed  CAS  Google Scholar 

  108. Motto I, Bordogna A, Soshilov AA, Denison MS, Bonati L (2011) New aryl-hydrocarbon receptor homology model targeted to improve docking reliability. J Chem Inf Model 51:2868–2881

    Article  PubMed  CAS  Google Scholar 

  109. Grando SA (2008) Basic and clinical aspects of non-neuronal acetylcholine: biological and clinical significance of non-canonical ligands of epithelial nicotinic acetylcholine receptors. J Pharmacol Sci 106(2):174–179

    Article  PubMed  CAS  Google Scholar 

  110. Schuller HM, Orloff M (1998) Tobacco-specific carcinogenic nitrosamines. Ligands for nicotinic acetylcholine receptors in human lung cancer cells. Biochem Pharmacol 55(9):1377–1384

    Article  PubMed  CAS  Google Scholar 

  111. Jelski W, Szmitkowski M (2008) Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the cancer diseases. Clin Chim Acta 395(1–2):1–5

    Article  PubMed  CAS  Google Scholar 

  112. Scotto KW (2003) Transcriptional regulation of ABC drug transporters. Oncogene 22:7496–7511

    Article  PubMed  CAS  Google Scholar 

  113. Taniyama Y, Takeuchi S, Kuroda Y (2010) Genetic polymorphisms and oral cancer. J UOEH 32(3):221–236

    PubMed  CAS  Google Scholar 

  114. Thier R, Brüning T, Roos PH, Rihs HP, Golka K, Ko Y, Bolt HM (2003) Markers of genetic susceptibility in human environmental hygiene and toxicology: the role of selected CYP450, NAT and GST genes. Int J Hyg Environ Health 206(3):149–171

    Article  PubMed  CAS  Google Scholar 

  115. Bartsch H, Hietanen E (1996) The role of individual susceptibility in cancer burden related to environmental exposure. Environ Health Perspect 104(Suppl 3):569–577

    Article  PubMed  CAS  Google Scholar 

  116. Broxterman HJ, Gotink KJ, Verheul HM (2009) Understanding the causes of multidrug resistance in cancer: a comparison of doxorubicin and sunitinib. Drug Resist Updat 12(4–5):114–126

    Article  PubMed  CAS  Google Scholar 

  117. Tiwari AK, Sodani K, Dai CL, Ashby CR Jr, Chen ZS (2011) Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol 12(4):570–594

    Article  PubMed  CAS  Google Scholar 

  118. Oesch-Bartlomowicz B, Oesch F (2008) Phosphorylation of xenobiotic metabolizing cytochromes P450. Anal Bioanal Chem 392(6):1085–1092

    Article  PubMed  CAS  Google Scholar 

  119. Armitage P, Doll R (1957) A two-stage theory of carcinogenesis in relation to the age distribution of human cancer. Br J Cancer 11:161–169

    Article  PubMed  CAS  Google Scholar 

  120. Fisher JC (1958) Multiple-mutation theory of carcinogenesis. Nature 181:651–652

    Article  PubMed  CAS  Google Scholar 

  121. Loeb L (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51:3075–3079

    PubMed  CAS  Google Scholar 

  122. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  PubMed  CAS  Google Scholar 

  123. Gomez-Lazaro M, Fernandez-Gomez FJ, Jordán J (2004) p53: twenty five years understanding the mechanism of genome protection. J Physiol Biochem 60(4):287–307

    Article  PubMed  CAS  Google Scholar 

  124. Boehme KA, Blattner C (2009) Regulation of p53–insights into a complex process. Crit Rev Biochem Mol Biol 44(6):367–392

    Article  PubMed  CAS  Google Scholar 

  125. Cairns J (1975) Mutation, selection, and the natural history of cancer. Nature 255:197–200

    Article  PubMed  CAS  Google Scholar 

  126. Petti S (2003) Pooled estimate of world leukoplakia prevalence: a systematic review. Oral Oncol 39:770–780

    Article  PubMed  Google Scholar 

  127. Van der Waal I (2009) Potentially malignant disorders of the oral and oropharyngeal mucosa: terminology, classification and present concepts of management. Oral Oncol 45:317–323

    Article  PubMed  Google Scholar 

  128. Fisher JC, Holloman JH (1951) A hypothesis for the origin of cancer foci. Cancer 4(5):16–18

    Article  Google Scholar 

  129. Nordling CO (1953) A new theory on cancer-inducing mechanism. Br J Cancer 7(1):68–72

    Article  PubMed  CAS  Google Scholar 

  130. Armitage P, Doll R (2004) The age distribution of cancer and multi-stage theory of carcinogenesis. Br J Cancer 33:1174–1179

    CAS  Google Scholar 

  131. Armitage P, Doll R (1954) The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 8:1–12

    Article  PubMed  CAS  Google Scholar 

  132. Morin PJ, Trent JM, Collins FS, Vogelstein B (2005) Cancer genetics. In: Kasper DL, Braunwald E, Fauci A, Hauser SL, Lango DL, Jameson JL (eds) Harrison’s principles of internal medicine, 16th edn. McGraw-Hill, New York, pp 447–453

    Google Scholar 

  133. Moolgavkar SH (1983) Model for human carcinogenesis: action of environmental agents. Environ Health Perspect 50:285–291

    Article  PubMed  CAS  Google Scholar 

  134. Moolgavkar SH, Kundson AG (1981) Mutation and cancer. A model for human carcinogenesis. J Natl Cancer 66:1037–1052

    CAS  Google Scholar 

  135. Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, Chen S, Karchin R, Kinzler KW, Vogelstein B1, Nowak MA (2010) Accumulations of driver and passenger mutations during tumor progression. PNAS 107(43):18545–18550

    Article  PubMed  CAS  Google Scholar 

  136. Knudson A (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68(4):820–823

    Article  PubMed  Google Scholar 

  137. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, McKenna A, Shefler E, Ramos AH, Stojanov P, Carter SL, Voet D, Cortés ML, Auclair D, Berger MF, Saksena G, Guiducci C, Onofrio RC, Parkin M, Romkes M, Weissfeld JL, Seethala RR, Wang L, Rangel-Escareño C, Fernandez-Lopez JC, Hidalgo-Miranda A, Melendez-Zajgla J, Winckler W, Ardlie K, Gabriel SB, Meyerson M, Lander ES, Getz G, Golub TR, Garraway LA, Grandis JR (2011) The mutational landscape of head and neck squamous cell carcinoma. Science 333(6046):1157–1160

    Article  PubMed  CAS  Google Scholar 

  138. Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, Fakhry C, Xie TX, Zhang J, Wang J, Zhang N, El-Naggar AK, Jasser SA, Weinstein JN, Treviño L, Drummond JA, Muzny DM, Wu Y, Wood LD, Hruban RH, Westra WH, Koch WM, Califano JA, Gibbs RA, Sidransky D, Vogelstein B, Velculescu VE, Papadopoulos N, Wheeler DA, Kinzler KW, Myers JN (2011) Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333(6046):1154–1157

    Article  PubMed  CAS  Google Scholar 

  139. Palanichamy MG, Zhang YP (2010) Potential pitfalls in MitoChip detected tumor-specific somatic mutations: a call for caution when interpreting patient data. BMC Cancer 10:597–606

    Article  PubMed  CAS  Google Scholar 

  140. Frank SA (2004) Commentary: mathematical models of cancer progression and epidemiology in the age of high throughput genomics. Int J Epidemiol 33:1179–1181

    Article  PubMed  Google Scholar 

  141. Hang B (2010) Formation and repair of tobacco carcinogen-derived biulky DNA adduct. J Nucleic Acids 2010: Article 709521, 29 pp

    Google Scholar 

  142. Peterson LA (2010) Formation repair, and genotoxic properties of bulky DNA adducts formed from tobacco-specific nitrosamines. J Nucleic Acids 2010: Article 284935, 11 pp

    Google Scholar 

  143. D’Errico M, Parlanti E, Dogliotti E (2008) Mechanisms of oxidative DNA damage repair relevance to human pathology. Mutat Res 659:4–14

    Article  PubMed  CAS  Google Scholar 

  144. Loechlar EL (1996) The role of adduct site-specific mutagenesis in understanding how carcinogen-DNA adducts cause mutations: perspective, prospects and problems. Carcinogenesis 17(5):895–902

    Article  Google Scholar 

  145. Slupphaug G, Kavli B, Krokan HE (2003) The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res 531:231–251

    Article  PubMed  CAS  Google Scholar 

  146. Takao M, Yasui A (2005) DNA repair initiated by glycosylases in the nucleus and mitochondria of mammalian cells; how our cells respond to a flood of oxidative DNA damage. Dermatol Sci Suppl 1:59–519

    Google Scholar 

  147. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  PubMed  CAS  Google Scholar 

  148. Foster PL (1997) No adaptive mutations occur on the F9 episome during adaptive mutation conditions in Escherichia coli. J Bacteriol 179:1550–1554

    PubMed  CAS  Google Scholar 

  149. Doll R, Peto R (1981) The causes of cancer. Oxford University Press, Oxford

    Google Scholar 

  150. Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P (2002) Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21(48):7435–7451

    Article  PubMed  CAS  Google Scholar 

  151. Perera RA, Samaranayake LP, Tsang CS (2010) Shedding dynamics of Epstein-Barr virus: a type 1 carcinogen. Arch Oral Biol 55(9):639–647

    Article  PubMed  CAS  Google Scholar 

  152. Rautava J, Syrjänen S (2011) Human papillomavirus infections in the oral mucosa. J Am Dent Assoc 142(8):905–914

    PubMed  CAS  Google Scholar 

  153. Hume WJ, Potten CS (1979) Advances in epithelial kinetics—an oral view. J Oral Pathol 8:3–22

    Article  PubMed  CAS  Google Scholar 

  154. Hume WJ, Potten CS (1983) Proliferative units in stratified squamous epithelium. Clin Exp Dermatol 8:95–106

    Article  PubMed  CAS  Google Scholar 

  155. Bickenbach JR (1981) Identification and behaviour of label-retaining cells in oral mucosa and skin. J Dent Res 60:1620–1622

    Google Scholar 

  156. Watt FM (1998) Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos Trans R Soc Lond B Bio Sci 353:831–837

    Article  CAS  Google Scholar 

  157. Jones PH (1997) Epithelial stem cells. Bioassays 19:683–690

    Article  CAS  Google Scholar 

  158. Izumi K, Terashi H, Marcelo CL, Feinberg SE (2000) Development and characterization of a tissue-engineered human oral mucosa equivalent produced in a serum-free culture system. J Dent Res 79:798–805

    Article  PubMed  CAS  Google Scholar 

  159. Slack JM (2000) Stem cells in epithelial tissues. Science 287:1431–1433

    Article  PubMed  CAS  Google Scholar 

  160. Squire CA, Kremer MJ (2001) Biology of oral Mucosa and Esophagus. J Natl Cancer Inst Monogr 29:7–15

    Article  Google Scholar 

  161. Bjarnason GA, Jordan RC, Sothern RB (1999) Circadian variation in the expression of cell-cycle proteins in human oral epithelium. Am J Pathol 154:613–622

    Article  PubMed  CAS  Google Scholar 

  162. Stiewe T (2007) The p53 family in differentiation and tumorigenesis. Nat Rev Cancer 7:165–168

    Article  PubMed  CAS  Google Scholar 

  163. Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137:609–622

    Article  PubMed  CAS  Google Scholar 

  164. Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, Xu Y (2005) p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7(2):165–171

    Article  PubMed  CAS  Google Scholar 

  165. Peltonen JK, Helppi HM, Paakko P, Turpeennniemi-Hujanen T, Vahakangas KH (2010) P53 in head and neck cancer: functional consequences and environmental implications of TP53 mutations. Head Neck Oncol 2:36, 10 pp

    Article  PubMed  CAS  Google Scholar 

  166. Zhao T, Xu Y (2010) p53 and stem cells: new developments and new concerns. Cell 20(3):170–176

    CAS  Google Scholar 

  167. Berstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681

    Article  CAS  Google Scholar 

  168. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  PubMed  CAS  Google Scholar 

  169. Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522

    Article  PubMed  CAS  Google Scholar 

  170. Sanduja S, Kaza V, Dixon D (2009) The mRNA decay factor tristetraprolin (TTP) induces senescence in human papillomavirus-transformed cervical cancer cells by targeting E6-AP ubiquitin ligase. Aging 1(9):803–817

    PubMed  CAS  Google Scholar 

  171. Hall AHS, Alexander KA (2003) RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J Virol 77(10):6066–6069

    Article  PubMed  CAS  Google Scholar 

  172. McGuigan K, Sgro CM (2009) Evolutionary consequences of cryptic genetic variation. Cell 24(6):305–311

    Google Scholar 

  173. Sarode SC, Sarode GS, Karmarkar S, Tupkari JV (2011) A new classification for potentially malignant disorders of the oral cavity. Oral Oncol 47:920–921

    Article  PubMed  Google Scholar 

  174. Warnakulasuruya S, Reibel J, Bouquot J, Diabelsteen E (2008) Oral epithelial dysplasia classification systems: predictive value, utility, weaknesses and scope for improvement. J Oral Pathol Med 37:127–133

    Article  Google Scholar 

  175. Napier SS, Speight PM (2008) Natural history of potentially malignant oral lesions and conditions: an overview of the literature. J Oral Pathol Med 1:1–10

    Article  Google Scholar 

  176. Tyzzer EE (1916) Tumour immunology. J Cancer Res 1:125–155

    CAS  Google Scholar 

  177. Masel J, Siegel ML (2009) Robustness: mechanisms and consequences. Trends Genet 25(9):395–403

    Article  PubMed  CAS  Google Scholar 

  178. Ineichen R, Batschelet E (1975) Genetic selection and deFinetti diagrams. J Math Biol 2:33

    Article  Google Scholar 

  179. Masel J (2011) Genetic drift. Curr Biol 21(20):R837–R838

    Article  PubMed  CAS  Google Scholar 

  180. D’Souza G, Kreimer AR, Viscidi R, Pawlita M, Fakhry C, Koch WM, Westra WH, Gillison ML (2007) Case–control study of human papillomavirus and oropharyngeal cancer. N Engl J Med 356:1944–1956

    Article  PubMed  Google Scholar 

  181. Tian T, Olson S, Whitacre JM, Harding A (2011) The origins of cancer robustness and evolability. Integr Biol 3:17–30

    Article  CAS  Google Scholar 

  182. Provine WB (2004) Ernst Mayr: genetics and speciation. Genetics 167(3):1041–1046

    PubMed  Google Scholar 

  183. Matsumoto N, Salam MA, Watanabe H, Amagasa T, Senpuku H (2004) Role of gene E2f1 in susceptibility to bacterial adherence of oral streptococci to tooth surfaces in mice. Oral Microbiol Immunol 19(4):270–276

    Article  PubMed  CAS  Google Scholar 

  184. Neumann GF, Jetschke G (2010) Evolutionary classification of toxin medicated interactions in microorganisms. Biosystems 99:155–166

    Article  PubMed  CAS  Google Scholar 

  185. Hou Z (2010) On permanence of all subsystems of competitive Lotka-Volterra systems with delays. Non Linear Anal R World Appl 11:4285–4301

    Article  Google Scholar 

  186. Aas JA, Paster BJ, Stokes LN et al (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721

    Article  PubMed  Google Scholar 

  187. Rehm J, Kanteres F, Lachenmeier DW (2010) Unrecorded consumption, quality of alcohol and health consequences. Drug Alcohol Rev 29:426

    Article  PubMed  Google Scholar 

  188. Yakushi T, Matsushita K (2010) Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol 86:1257

    Article  PubMed  CAS  Google Scholar 

  189. Bertino JR, Hillcoat BL (1968) Regulation of dihydrofolate reductase and other folate-­requiring enzymes. Adv Enzym Regul 6:335

    Article  CAS  Google Scholar 

  190. Iwami Y, Takahashi-Abbe S, Takahashi N et al (2000) Rate-limiting steps of glucose and sorbitol metabolism in Streptococcus mutans cells exposed to air. Oral Microbiol Immunol 15:325

    Article  PubMed  CAS  Google Scholar 

  191. Nobbs AH, Lamont RJ, Jenkinson HF (2009) Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73:407

    Article  PubMed  CAS  Google Scholar 

  192. Jenkinson HF, Lamont RJ (1997) Streptococcal adhesion and colonization. Crit Rev Oral Biol Med 8:175

    Article  PubMed  CAS  Google Scholar 

  193. Druesne-Pecollo N, Tehard B, Mallet Y et al (2009) Alcohol and genetic polymorphisms: effect on risk of alcohol-related cancer. Lancet Oncol 10:173

    Article  PubMed  CAS  Google Scholar 

  194. Asakage T, Yokoyama A, Haneda T et al (2007) Genetic polymorphisms of alcohol and aldehyde dehydrogenases, and drinking, smoking and diet in Japanese men with oral and pharyngeal squamous cell carcinoma. Carcinogenesis 28:865

    Article  PubMed  CAS  Google Scholar 

  195. Marichalar-Mendia X, Rodriguez-Tojo MJ, Acha-Sagredo A et al (2010) Oral cancer and polymorphism of ethanol metabolising genes. Oral Oncol 46:9

    Article  PubMed  CAS  Google Scholar 

  196. Higuchi S (1994) Polymorphisms of ethanol metabolizing enzyme genes and alcoholism. Alcohol Suppl 2:29

    CAS  Google Scholar 

  197. Moreb JS (2008) Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther 3:237

    Article  PubMed  CAS  Google Scholar 

  198. Feliciani C, Gupta AK, Sauder DN (1996) Keratinocytes and cytokine/growth factors. Crit Rev Oral Biol Med 7:300–318

    Article  PubMed  CAS  Google Scholar 

  199. Marcinkiewicz M, Grabowska SZ, Czyzewska E (1998) Role of epidermal growth factor (EGF) in oesophageal mucosal integrity. Curr Med Res Opin 14:145–153

    Article  PubMed  CAS  Google Scholar 

  200. Kamer AR, Krebs L, Hoghooghi SA, Liebow C (1999) Proliferative and apoptotic responses in cancers with special reference to oral cancers. Crit Rev Oral Biol Med 10:58–78

    Article  PubMed  CAS  Google Scholar 

  201. Matheny ES, Hanna NM, Jung WG, Chen Z, Wilder-Smith P, Araghi RM, Brenner M (2004) Optical coherence tomography of malignancy in hamster cheek pouches. J Biomed Opt 9(5):978–981

    Article  PubMed  Google Scholar 

  202. Onizawa K, Okamura N, Saginoya H, Yusa H, Yanagawa T, Yoshida H (2002) Analysis of fluorescence in oral squamous cell carcinoma. Oral Oncol 38(4):343–348

    Article  PubMed  Google Scholar 

  203. Lim HJ, Oh CH (2011) Indocyanine green-based photodynamic therapy with 785 nm light emitting diode for oral squamous cancer cells. Photodiagn Photodyn Ther 8(4):337–342

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Schwartz .

Editor information

Editors and Affiliations

Glossary

Fitness

Adaptive optimum phenotype and is the contribution of progeny to next generations. Fitness can also be described by a probability and an array of x phenotypes in a specific environment.

Cryptic Genetic Variation

Genetic variation that does not contribute to range of phenotypes under standard environmental conditions but becomes important ­under changes in environment.

Evolvability

ability of cell or individual to respond to natural or inducible selection. This dependent upon complexity, degeneracy, and robustness. A product of phenotype and genotype in an environment.

Robustness

Invariance of phenotype as a product of genetic and environment.

Pleiotropy

effect of a single genetic locus to produce multiple phenotypic variations for enhanced survival.

Field cancerization

a single mutated stem cell can expand into adjacent expanding clones of cells and produce a tumor mass. This principal asserts that development of a predominant clinical cancer in the head and neck does not completely describe a level of transformation because there are many other sites of malignant transformation identified by chromosomal of gene changes that have not attained clinical relevance.

Senescence

cells in G0, resting phase.

Driver mutations

mutations provide a selective growth advantage to the cell.

Passage mutations

Mutations do not alter fitness but occur coincidentally or subsequently acquired a driver mutation. Passenger mutations occur in every cell that has a driver mutation.

Gatekeeper

gene is an “oncogene”, regulator of cell growth, differentiation and nuclear stability.

Tumor suppressor gene

put the brakes on cancer induction process.

Pluripotential_stem cell populations

high degree of activity which permits differentiation to ectoderm, endoderm mesoderm or neuro-ectoderm.

Phenotypic variation

maintains germ cell line origin (e.g., ectoderm) although offering an opportunity for progression of dedifferentiation.

Epigenetic modifications

These can include methylation regulation of cytosine bases in cytosine guanine islands (e.g., CpG sites) that assist in regulation of expression, but also accompanied by changes in acetylation of histones and phosphorylation of various purine bases that can silence tumor suppressor genes.

Genetic drift

a product of random sampling, which also contributes to phenotypic variability.

Hardy-Weinberg equilibrium (HWE) and disequilibrium

information regarding evolvability of organisms in selected environments to determine selection of the fittest in a particular microenvironment.

Fitness landscape

a stable local maxima for each cell and population until another selective change is introduced.

Allelic frequency

determine a fraction of the copies of one gene shared among offspring to determine genetic drift in a population of know parental genotypes.

Relative risk

a risk assessment for an event relative to exposure compared to a normal environment.

Founder’s effect

cell survivors with an opportunity for selective populations to proliferate from a larger population.

Lotka-Volterra

prey and predator based systems.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schwartz, J. (2013). Head and Neck Carcinogenesis a Product of Complex Evolutionary Forces. In: Radosevich, J. (eds) Head & Neck Cancer: Current Perspectives, Advances, and Challenges. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5827-8_14

Download citation

Publish with us

Policies and ethics