Skip to main content

Functional Consequences of Nuclear and Nucleolar Architecture

  • Chapter
  • First Online:
Proteins of the Nucleolus
  • 1078 Accesses

Abstract

The nucleus is a highly compartmentalized structure. One of the most prominent nuclear compartments is the nucleolus. The nucleus and nucleolus share many structural and epigenetic features, but these features have specific functional significance. For instance, replication proceeds in replication foci, transcription in transcription “factories” or nucleoli, and splicing is regulated by proteins accumulated in nuclear speckles. Similarly, DNA repair events are associated with specific structural characteristics and occur in repair foci consisting of accumulated DNA repair-related proteins. Based on these observations, it is increasingly clear that changes in global genome organization and chromatin dynamics occur in parallel with functional changes in the genome. These structural characteristics contribute to the balance between genome stability and instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATM:

Ataxia telangiectasia mutated kinase

ATR:

Serine/threonine kinase/ataxia telangiectasia/Rad3-related protein

BER:

Base excision repair

BrdU:

5-bromo-2′-deoxyuridine

CAF1:

Chromatin assembly factor 1

CD:

Chromodomain

CDK2:

Cyclin-dependent kinase 2

CK2:

Casein kinase 2

CSD:

Chromoshadow domain

DDR:

DNAdamage responses

DFC:

Dense fibrillar components

dn:

Double null

DSB:

Doubles strand break

FC:

Fibrillar center

GC:

Granular components

HDAC:

Histone deacetylases

HP1:

Heterochormatin protein 1

HR:

Homologous recombination

NER:

Nucleotide excision repair

NHEJ:

Non-homologous end joining

NORs:

Nucleolar organizing regions

PML:

Promyelocytic leukaemia bodies

Rb:

Retinoblastoma gene

snRNPs:

Small nuclear ribonucleoprotein particles

SSB:

Single strand break

TDP:

Time decision point

TEM:

Transmission electron microscopy

UBF:

Upstream binding factor

wt:

Wild type

References

  • Al-Baker EA, Boyle J, Harry R, Kill IR (2004) A p53-independent pathway regulates nucleolar segregation and antigen translocation in response to DNA damage induced by UV irradiation. Exp Cell Res 92:179–186

    Article  CAS  Google Scholar 

  • Alberts B (2003) DNA replication and recombination. Nature 42:431–435

    Article  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  • Arabi A, Wu S, Ridderstråle K, Bierhoff H, Shiue C, Fatyol K, Fahlén S, Hydbring P, Söderberg O, Grummt I, Larsson LG, Wright AP (2005) c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 7:303–310

    Article  PubMed  CAS  Google Scholar 

  • Ayoub N, Jeyasekharan AD, Bernal JA, Venkitaraman AR (2008) HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature 453:682–686

    Article  PubMed  CAS  Google Scholar 

  • Baker SP, Phillips J, Anderson S, Qiu Q, Shabanowitz J, Smith MM, Yates JR 3rd, Hunt DF, Grant PA (2010) Histone H3 Thr 45 phosphorylation is a replication-associated post-translational modification in S. cerevisiae. Nat Cell Biol 12:294–298

    PubMed  CAS  Google Scholar 

  • Bártová E, Kozubek S, Kozubek M, Jirsová P, Lukášová E, Skalníková M, Buchníčková K (2000) The influence of the cell cycle, differentiation and irradiation on the nuclear location of the abl, bcr and c-myc genes in human leukemic cells. Leuk Res 24:233–241

    Article  PubMed  Google Scholar 

  • Bártová E, Krejčí J, Harničarová A, Kozubek S (2008a) Differentiation of human embryonic stem cells induces condensation of chromosome territories and formation of heterochromatin protein 1 foci. Differentiation 76:24–32

    PubMed  Google Scholar 

  • Bártová E, Galiová G, Krejčí J, Harničarová A, Strašák L, Kozubek S (2008b) Epigenome and chromatin structure in human embryonic stem cells undergoing differentiation. Dev Dyn 237:3690–3702

    Article  PubMed  CAS  Google Scholar 

  • Bártová E, Šustáčková G, Stixová L, Kozubek S, Legartová S (2011) Recruitment of Oct4 protein to UV-damaged chromatin in embryonic stem cells. PLoS One 6. doi:10.1371/journal.pone.0027281

  • Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19:1635–1655

    Article  PubMed  CAS  Google Scholar 

  • Blander G, Zalle N, Daniely Y, Taplick J, Gray MD, Oren M (2002) DNA damage-induced translocation of the Werner helicase is regulated by acetylation. J Biol Chem 277:50934–50940

    Article  PubMed  CAS  Google Scholar 

  • Boisvert FM, Lamond AI (2010) p53-Dependent subcellular proteome localization following DNA damage. Proteomics 10:4087–4097

    Article  PubMed  CAS  Google Scholar 

  • Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40:216–227

    Article  PubMed  CAS  Google Scholar 

  • Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10:211–219

    Article  PubMed  CAS  Google Scholar 

  • Camargo M, Cervenka J (1982) Patterns of DNA replication of human chromosomes II. Replication map and replication model. Am J Hum Genet 34:757–780

    PubMed  CAS  Google Scholar 

  • Cardoso MC, Leonhardt H, Nadal-Ginard B (1993) Reversal of terminal differentiation and control of DNA replication: cyclin A and Cdk2 specifically localize at subnuclear sites of DNA replication. Cell 74:979–992

    Article  PubMed  CAS  Google Scholar 

  • Cardoso MC, Joseph C, Rahn HP, Reusch R, Nadal-Ginard B, Leonhardt H (1997) Mapping and use of a sequence that targets DNA ligase I to sites of DNA replication in vivo. J Cell Biol 139:579–587

    Article  PubMed  CAS  Google Scholar 

  • Chakalova L, Fraser P (2010) Organization of transcription. Cold Spring Harb Perspect Biol 2:a000729

    Article  PubMed  CAS  Google Scholar 

  • Chaly N, Munro SB (1996) Centromeres reposition to the nuclear periphery during L6E9 myogenesis in vitro. Exp Cell Res 223:274–278

    Article  PubMed  CAS  Google Scholar 

  • Chang MS, Sasaki H, Campbell MS, Kraeft SK, Sutherland R, Yang CY, Liu Y, Auclair D, Hao L, Sonoda H, Ferland LH, Chen LB (1999) HRad17 colocalizes with NHP2L1 in the nucleolus and redistributes after UV irradiation. J Biol Chem 274:36544–36549

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Dundr M, Wang C, Leung A, Lamond A, Misteli T, Huang S (2005) Condensed mitotic chromatin is accessible to transcription factors and chromatin structural proteins. J Cell Biol 168:41–54

    Article  PubMed  CAS  Google Scholar 

  • Clemente-Ruiz M, González-Prieto R, Prado F (2011) Histone H3K56 Acetylation, CAF1, and Rtt106 coordinate nucleosome assembly and stability of advancing replication forks. PLoS Genet 7:e1002376

    Article  PubMed  CAS  Google Scholar 

  • Cmarko D, Verschure PJ, Rothblum LI, Hernandez-Verdun D, Amalric F, van Driel R, Fakan S (2000) Ultrastructural analysis of nucleolar transcription in cells microinjected with 5-bromo-UTP. Histochem Cell Biol 113:181–187

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  • Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • David-Pfeuty T, Nouvian-Dooghe Y, Sirri V, Roussel P, Hernandez-Verdun D (2001) Common and reversible regulation of wild-type p53 function and of ribosomal biogenesis by protein kinases in human cells. Oncogene 20:5951–5963

    Article  PubMed  CAS  Google Scholar 

  • Dundr M, Hoffmann-Rohrer U, Hu Q, Grummt I, Rothblum LI, Phair RD, Misteli T (2002) A kinetic framework for a mammalian RNA polymerase in vivo. Science 298:1623–1626

    Article  PubMed  CAS  Google Scholar 

  • Erard MS, Belenguer P, Caizergues-Ferrer M, Pantaloni A, Amalric F (1988) A major nucleolar protein, nucleolin, induces chromatin decondensation by binding to histone H1. Eur J Biochem 175:525–530

    Article  PubMed  CAS  Google Scholar 

  • Espada J, Ballestar E, Santoro R, Fraga MF, Villar-Garea A, Németh A, Lopez-Serra L, Ropero S, Aranda A, Orozco H, Moreno V, Juarranz A, Stockert JC, Längst G, Grummt I, Bickmore W, Esteller M (2007) Epigenetic disruption of ribosomal RNA genes and nucleolar architecture in DNA methyltransferase 1 (Dnmt1) deficient cells. Nucleic Acids Res 35:2191–2198

    Article  PubMed  CAS  Google Scholar 

  • Essers J, Theil AF, Baldeyron C, van Cappellen WA, Houtsmuller AB, Kanaar R, Vermeulen W (2005) Nuclear dynamics of PCNA in DNA replication and repair. Mol Cell Biol 25:9350–9359

    Article  PubMed  CAS  Google Scholar 

  • Ferrai C, de Castro IJ, Lavitas L, Chotalia M, Pombo A (2010) Gene positioning. Cold Spring Harb Perspect Biol 2:a000588

    Article  PubMed  CAS  Google Scholar 

  • Fodor BD, Kubicek S, Yonezawa M, O’Sullivan RJ, Sengupta R, Perez-Burgos L, Opravil S, Mechtler K, Schotta G, Jenuwein T (2006) Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev 20:1557–1562

    Article  PubMed  CAS  Google Scholar 

  • Frescas D, Guardavaccaro D, Bassermann F, Koyama-Nasu R, Pagano M (2007) JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 450:309–313

    Article  PubMed  CAS  Google Scholar 

  • Fumagalli S, Di Cara A, Neb-Gulati A, Natt F, Schwemberger S, Hall J, Babcock GF, Bernardi R, Pandolfi PP, Thomas G (2009) Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol 11:501–508

    Article  PubMed  CAS  Google Scholar 

  • Galiová G, Bártová E, Raska I, Krejcí J, Kozubek S (2008) Chromatin changes induced by lamin A/C deficiency and the histone deacetylase inhibitor trichostatin A. Eur J Cell Biol 87:291–303

    Article  PubMed  CAS  Google Scholar 

  • Gilbert DM (2002) Replication timing and transcriptional control: beyond cause and effect. Curr Opin Cell Biol 14:377–383

    Article  PubMed  CAS  Google Scholar 

  • Ginisty H, Sicard H, Roger B, Bouvet P (1999) Structure and functions of nucleolin. J Cell Sci 112(Pt 6):761–772

    PubMed  CAS  Google Scholar 

  • Gonzalez IL, Sylvester JE (1997) Beyond ribosomal DNA: on towards the telomere. Chromosoma 105:431–437

    Article  PubMed  CAS  Google Scholar 

  • González-Melendi P, Wells B, Beven AF, Shaw PJ (2001) Single ribosomal transcription units are linear, compacted Christmas trees in plant nucleoli. Plant J 27:223–233

    Article  PubMed  Google Scholar 

  • Harničarová Horáková A, Galiová G, Legartová S, Kozubek S, Matula P, Bártová E (2010) Chromocentre integrity and epigenetic marks. J Struct Biol 169:124–133

    Article  PubMed  CAS  Google Scholar 

  • Harničarová A, Kozubek S, Pacherník J, Krejčí J, Bártová E (2006) Distinct nuclear arrangement of active and inactive c-myc genes in control and differentiated colon carcinoma cells. Exp Cell Res 312:4019–4035

    Article  PubMed  CAS  Google Scholar 

  • Herrera RE, Chen F, Weinberg RA (1996) Increased histone H1 phosphorylation and relaxed chromatin structure in Rb-deficient fibroblasts. Proc Natl Acad Sci U S A 93:11510–11515

    Article  PubMed  CAS  Google Scholar 

  • Horáková AH, Bártová E, Galiová G, Uhlírová R, Matula P, Kozubek S (2010) SUV39h-independent association of HP1 beta with fibrillarin-positive nucleolar regions. Chromosoma 119:227–241

    Article  PubMed  CAS  Google Scholar 

  • Iborra FJ, Pombo A, Jackson DA, Cook PR (1996) Active RNA polymerases are localized within discrete transcription “factories” in human nuclei. J Cell Sci 109(Pt 6):1427–1436

    PubMed  CAS  Google Scholar 

  • Jackson DA, Pombo A (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 140:1285–1295

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, Hassan AB, Errington RJ, Cook PR (1993) Visualization of focal sites of transcription within human nuclei. EMBO J 12:1059–1065

    PubMed  CAS  Google Scholar 

  • Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC, Allis CD, Khorasanizadeh S (2001) Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J 20:5232–5241

    Article  PubMed  CAS  Google Scholar 

  • Koberna K, Malínský J, Pliss A, Masata M, Večeřová J, Fialová M, Bednár J, Raška I (2002) Ribosomal genes in focus: new transcripts label the dense fibrillar components and form clusters indicative of “Christmas trees” in situ. J Cell Biol 157:743–748, Erratum in: J Cell Biol 158:369

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  • Kozubek S, Lukásová E, Rýznar L, Kozubek M, Lisková A, Govorun RD, Krasavin EA, Horneck G (1997) Distribution of ABL and BCR genes in cell nuclei of normal and irradiated lymphocytes. Blood 89:4537–4545

    PubMed  CAS  Google Scholar 

  • Krude T, Keller C (2001) Chromatin assembly during S phase: contributions from histone deposition, DNA replication and the cell division cycle. Cell Mol Life Sci 58:665–672

    Article  PubMed  CAS  Google Scholar 

  • Kruhlak M, Crouch EE, Orlov M, Montaño C, Gorski SA, Nussenzweig A, Misteli T, Phair RD, Casellas R (2007) The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks. Nature 447:730–734

    Article  PubMed  CAS  Google Scholar 

  • Küpper K, Kölbl A, Biener D, Dittrich S, von Hase J, Thormeyer T, Fiegler H, Carter NP, Speicher MR, Cremer T, Cremer M (2007) Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 116:285–306

    Article  PubMed  Google Scholar 

  • Kwon SH, Workman JL (2011) HP1c casts light on dark matter. Cell Cycle 10:625–630

    Article  PubMed  CAS  Google Scholar 

  • Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115

    Article  PubMed  CAS  Google Scholar 

  • LeRoy G, Weston JT, Zee BM, Young NL, Plazas-Mayorca MD, Garcia BA (2009) Heterochromatin protein 1 is extensively decorated with histone code-like post-translational modifications. Mol Cell Proteomics 8:2432–2442

    Article  PubMed  CAS  Google Scholar 

  • Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH (2003) Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3:577–587

    Article  PubMed  CAS  Google Scholar 

  • Lomberk G, Bensi D, Fernandez-Zapico ME, Urrutia R (2006) Evidence for the existence of an HP1-mediated subcode within the histone code. Nat Cell Biol 8:407–415

    Article  PubMed  CAS  Google Scholar 

  • Luijsterburg MS, Dinant C, Lans H, Stap J, Wiernasz E, Lagerwerf S, Warmerdam DO, Lindh M, Brink MC, Dobrucki JW, Aten JA, Fousteri MI, Jansen G, Dantuma NP, Vermeulen W, Mullenders LH, Houtsmuller AB, Verschure PJ, van Driel R (2009) Heterochromatin protein 1 is recruited to various types of DNA damage. J Cell Biol 185:577–586

    Article  PubMed  CAS  Google Scholar 

  • Lukas J, Lukas C, Bartek J (2011) More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol 13:1161–1169

    Article  PubMed  CAS  Google Scholar 

  • Mahy NL, Perry PE, Bickmore WA (2002) Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 159:753–763

    Article  PubMed  CAS  Google Scholar 

  • McStay B, Grummt I (2008) The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol 24:131–157

    Article  PubMed  CAS  Google Scholar 

  • Miller OL Jr, Beatty BR (1969) Portrait of a gene. J Cell Physiol 74(Suppl 1):225

    Article  PubMed  CAS  Google Scholar 

  • Minc E, Allory Y, Worman HJ, Courvalin JC, Buendia B (1999) Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108:220–234

    Article  PubMed  CAS  Google Scholar 

  • Misteli T, Soutoglou E (2009) The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol 10:243–254

    Article  PubMed  CAS  Google Scholar 

  • Moore HM, Bai B, Boisvert FM, Latonen L, Rantanen V, Simpson JC, Pepperkok R, Lamond AI, Laiho M (2011) Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation. Mol Cell Proteomics 10:M111.009241

    Article  PubMed  CAS  Google Scholar 

  • Nagy Z, Soutoglou E (2009) DNA repair: easy to visualize, difficult to elucidate. Trends Cell Biol 19:617–629

    Article  PubMed  CAS  Google Scholar 

  • Nicol SM, Causevic M, Prescott AR, Fuller-Pace FV (2000) The nuclear DEAD box RNA helicase p68 interacts with the nucleolar protein fibrillarin and colocalizes specifically in nascent nucleoli during telophase. Exp Cell Res 257:272–280

    Article  PubMed  CAS  Google Scholar 

  • Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Nikiforov YE (2000) Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290:138–141

    Article  PubMed  CAS  Google Scholar 

  • Olson MO, Dundr M (2005) The moving parts of the nucleolus. Histochem Cell Biol 123:203–216

    Article  PubMed  CAS  Google Scholar 

  • Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, Higashimoto Y, Appella E, Minucci S, Pandolfi PP, Pelicci PG (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406:207–210

    Article  PubMed  CAS  Google Scholar 

  • Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404:604–609

    Article  PubMed  CAS  Google Scholar 

  • Piacentini L, Fanti L, Berloco M, Perrini B, Pimpinelli S (2003) Heterochromatin protein 1 (HP1) is associated with induced gene expression in Drosophila euchromatin. J Cell Biol 161:707–714

    Article  PubMed  CAS  Google Scholar 

  • Pombo A, Cook PR (1996) The localization of sites containing nascent RNA and splicing factors. Exp Cell Res 229:201–203

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan B, Smerdon MJ (1986) Changes in nuclear protein acetylation in UV-damaged human cells. Carcinogenesis 7:1087–1094

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan B, Smerdon MJ (1989) Enhanced DNA repair synthesis in hyperacetylated nucleosomes. J Biol Chem 264:11026–11034

    PubMed  CAS  Google Scholar 

  • Raska I (2003) Oldies but goldies: searching for Christmas trees within the nucleolar architecture. Trends Cell Biol 13:517–525

    Article  PubMed  CAS  Google Scholar 

  • Raska I, Dundr M, Koberna K, Melcák I, Risueño MC, Török I (1995) Does the synthesis of ribosomal RNA take place within nucleolar fibrillar centers or dense fibrillar components? A critical appraisal. J Struct Biol 114:1–22

    Article  PubMed  CAS  Google Scholar 

  • Ruggero D, Pandolfi PP (2003) Does the ribosome translate cancer? Nat Rev Cancer 3:179–192

    Article  PubMed  CAS  Google Scholar 

  • Russell J, Zomerdijk JC (2005) RNA-polymerase-I-directed rDNA transcription, life and works. Trends Biochem Sci 30:87–96

    Article  PubMed  CAS  Google Scholar 

  • Sadoni N, Langer S, Fauth C, Bernardi G, Cremer T, Turner BM, Zink D (1999) Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol 146:1211–1226

    Article  PubMed  CAS  Google Scholar 

  • Santoro R, Grummt I (2005) Epigenetic mechanism of rRNA gene silencing: temporal order of NoRC-mediated histone modification, chromatin remodeling, and DNA methylation. Mol Cell Biol 25:2539–2546

    Article  PubMed  CAS  Google Scholar 

  • Santoro R, Li J, Grummt I (2002) The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet 32:393–396

    Article  PubMed  CAS  Google Scholar 

  • Sarg B, Helliger W, Talasz H, Förg B, Lindner HH (2006) Histone H1 phosphorylation occurs site-specifically during interphase and mitosis: identification of a novel phosphorylation site on histone H1. J Biol Chem 281:6573–6580

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Benavente R (1990) Functional and dynamic aspects of the mammalian nucleolus. Bioessays 12:14–21

    Article  PubMed  CAS  Google Scholar 

  • Shareef MM, King C, Damaj M, Badagu R, Huang DW, Kellum R (2001) Drosophila heterochromatin protein 1 (HP1) origin recognition complex (ORC) protein is associated with HP1 and ORC and functions in heterochromatin-induced silencing. Mol Biol Cell 12:1671–1685

    PubMed  CAS  Google Scholar 

  • Shaw PJ, Abranches R, Paula Santos A, Beven AF, Stoger E, Wegel E, González-Melendi P (2002) The architecture of interphase chromosomes and nucleolar transcription sites in plants. J Struct Biol 140:31–38

    Article  PubMed  CAS  Google Scholar 

  • Shimi T, Pfleghaar K, Kojima S, Pack CG, Solovei I, Goldman AE, Adam SA, Shumaker DK, Kinjo M, Cremer T, Goldman RD (2008) The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 22:3409–3421

    Article  PubMed  CAS  Google Scholar 

  • Sirri V, Urcuqui-Inchima S, Roussel P, Hernandez-Verdun D (2008) Nucleolus: the fascinating nuclear body. Histochem Cell Biol 129:13–31

    Article  PubMed  CAS  Google Scholar 

  • Stixová L, Bártová E, Matula P, Daněk O, Legartová S, Kozubek S (2011) Heterogeneity in the kinetics of nuclear proteins and trajectories of substructures associated with heterochromatin. Epigenetics Chromatin 4:5

    Article  PubMed  CAS  Google Scholar 

  • Šustáčková G, Kozubek S, Stixová L, Legartová S, Matula P, Orlova D, Bártová E (2011) Acetylation-dependent nuclear arrangement and recruitment of BMI1 protein to UV-damaged chromatin. J Cell Physiol 227:1838–1850

    Article  CAS  Google Scholar 

  • Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H, Shinkai Y (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16:1779–1791

    Article  PubMed  CAS  Google Scholar 

  • Takizawa T, Gudla PR, Guo L, Lockett S, Misteli T (2008) Allele-specific nuclear positioning of the monoallelically expressed astrocyte marker GFAP. Genes Dev 22:489–498

    Article  PubMed  CAS  Google Scholar 

  • Taslerová R, Kozubek S, Lukásová E, Jirsová P, Bártová E, Kozubek M (2003) Arrangement of chromosome 11 and 22 territories, EWSR1 and FLI1 genes, and other genetic elements of these chromosomes in human lymphocytes and Ewing sarcoma cells. Hum Genet 112:143–155

    PubMed  Google Scholar 

  • Thiry M, Cheutin T, O’Donohue MF, Kaplan H, Ploton D (2000) Dynamics and three-dimensional localization of ribosomal RNA within the nucleolus. RNA 6:1750–1761

    Article  PubMed  CAS  Google Scholar 

  • Tsai RY, McKay RD (2002) A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev 16:2991–3003

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  • Volarevic S, Stewart MJ, Ledermann B, Zilberman F, Terracciano L, Montini E, Grompe M, Kozma SC, Thomas G (2000) Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science 288:2045–2047

    Article  PubMed  CAS  Google Scholar 

  • Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J, Beck S, Campbell RD, Goldsworthy M, Powis SH, Ragoussis J, Trowsdale J, Sheer D (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113(Pt 9):1565–1576

    PubMed  CAS  Google Scholar 

  • Wansink DG, Schul W, van der Kraan I, van Steensel B, van Driel R, de Jong L (1993) Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol 122:283–293

    Article  PubMed  CAS  Google Scholar 

  • Wiblin AE, Cui W, Clark AJ, Bickmore WA (2005) Distinctive nuclear organisation of centromeres and regions involved in pluripotency in human embryonic stem cells. J Cell Sci 118(Pt 17):3861–3868

    Article  PubMed  CAS  Google Scholar 

  • Worton RG, Sutherland J, Sylvester JE, Willard HF, Bodrug S, Dubé I, Duff C, Kean V, Ray PN, Schmickel RD (1988) Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5’ end. Science 239:64–68

    Article  Google Scholar 

  • Yuan X, Zhou Y, Casanova E, Chai M, Kiss E, Gröne HJ, Schütz G, Grummt I (2005) Genetic inactivation of the transcription factor TIF-IA leads to nucleolar disruption, cell cycle arrest, and p53-mediated apoptosis. Mol Cell 19:77–87

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Shi Y, Li X, Du W, Luo G, Gou Y, Wang X, Guo X, Liu J, Ding J, Wu K, Fan D (2010) Inhibition of the p53-MDM2 interaction by adenovirus delivery of ribosomal protein L23 stabilizes p53 and induces cell cycle arrest and apoptosis in gastric cancer. J Gene Med 12:147–156

    Article  PubMed  CAS  Google Scholar 

  • Zink D, Cremer T, Saffrich R, Fischer R, Trendelenburg MF, Ansorge W, Stelzer EH (1998) Structure and dynamics of human interphase chromosome territories in vivo. Hum Genet 102:241–251

    Article  PubMed  CAS  Google Scholar 

  • Zink D, Bornfleth H, Visser A, Cremer C, Cremer T (1999) Organization of early and late replicating DNA in human chromosome territories. Exp Cell Res 247:176–188

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Youth, and Sports of the Czech Republic (research projects LC535, LC06027, ME 919, LD11020) and by the Academy of Sciences of the Czech Republic (projects AVOZ50040702 and AVOZ50040507). It was also supported by EU project COST TD09/05 and Marie Curie project PIRSES-GA-2010-269156-LCS. Some experiments were supported by the national COST-CZ project LD11020 and by Grant Agency of Czech Republic, project P302/10/1022. Many thanks to Soňa Legartová for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Bártová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bártová, E., Stixová, L. (2013). Functional Consequences of Nuclear and Nucleolar Architecture. In: O'Day, D., Catalano, A. (eds) Proteins of the Nucleolus. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5818-6_2

Download citation

Publish with us

Policies and ethics