Skip to main content

Redox Pathways as a Platform in Drug Development

  • Chapter
  • First Online:
Oxidative Stress and Redox Regulation

Abstract

Redox homeostasis is frequently aberrantly regulated in human diseases such as cancer and neurological disorders. Partly as a consequence, there is optimism in validating and extending redox controlling pathways as a platform for the discovery/development of drugs, particularly in cancer. As the primary redox buffer, cellular thiols have been variously therapeutically targeted. N-acetylcysteine is the simplest pharmaceutical version of a bioavailable redox equivalent. It has uses in a number of disparate human pathologies. Other agents have redox active centers primarily as a function of nucleophilic centers associated with the variable valence states of sulfur. Redox homeostasis is aberrantly regulated in cancer cells and this has provided an opportunity to advance treatment concepts that attempt to produce a beneficial therapeutic index. A component of the approaches to prevent cancer is based upon the possibility that thiols provide a way of detoxifying environmental electrophiles prior to enacting damage to DNA that could progress a cell towards a cancerous phenotype. Further, therapies designed to enhance myeloproliferation, hematopoietic progenitor cell mobilization and immune response also have a foundation in modulation of redox pathways within the bone marrow compartment. As a consequence of these principles, a number of “redox modulating” drugs are under development and progressing towards FDA review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate C, Patel L, Rauscher FJ 3rd, Curran T (1990) Redox regulation of fos and jun DNA-binding activity in vitro. Science 249:1157

    Article  CAS  PubMed  Google Scholar 

  • Adams GB et al (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439:599

    Article  CAS  PubMed  Google Scholar 

  • Adler V et al (1999) Regulation of JNK signaling by GSTp. EMBO J 18:1321

    Article  CAS  PubMed  Google Scholar 

  • Akerlund B et al (1996) Effect of N-acetylcysteine(NAC) treatment on HIV-1 infection: a double-blind placebo-controlled trial. Eur J Clin Pharmacol 50:457

    Article  CAS  PubMed  Google Scholar 

  • Aruoma OI, Halliwell B, Hoey BM, Butler J (1989) The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 6:593

    Article  CAS  PubMed  Google Scholar 

  • Baldini M, Sacchetti C (1953) Effect of cystine and cysteine on human bone marrow cultured in medium deficient in amino acids. Rev Hematol 8:3

    CAS  PubMed  Google Scholar 

  • Bertini R et al (1999) Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells. J Exp Med 189:1783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brock N, Hilgard P, Pohl J, Ormstad K, Orrenius S (1984) Pharmacokinetics and mechanism of action of detoxifying low-molecular-weight thiols. J Cancer Res Clin Oncol 108:87

    Article  CAS  PubMed  Google Scholar 

  • Calvi LM et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841

    Article  CAS  PubMed  Google Scholar 

  • Chou WC et al (2004) Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc Natl Acad Sci USA 101:4578

    Article  CAS  PubMed  Google Scholar 

  • Christopherson KW 2nd, Cooper S, Broxmeyer HE (2003) Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood 101:4680

    Article  CAS  PubMed  Google Scholar 

  • Cipolleschi MG, Dello Sbarba P, Olivotto M (1993) The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82:2031

    CAS  PubMed  Google Scholar 

  • Clark LC et al (1998) Decreased incidence of prostate cancer with selenium supplementation: results of a double-blind cancer prevention trial. Br J Urol 81:730

    Article  CAS  PubMed  Google Scholar 

  • DeNicola GM et al (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475:106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dinkova-Kostova AT, Fahey JW, Talalay P (2004) Chemical structures of inducers of nicotinamide quinone oxidoreductase 1 (NQO1). Methods Enzymol 382:423

    Article  CAS  PubMed  Google Scholar 

  • Dominici S et al (1999) Redox modulation of cell surface protein thiols in U937 lymphoma cells: the role of gamma-glutamyl transpeptidase-dependent H2O2 production and S-thiolation. Free Radic Biol Med 27:623

    Article  CAS  PubMed  Google Scholar 

  • Doroshow JH (1983) Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res 43:460

    CAS  PubMed  Google Scholar 

  • Drane P, Bravard A, Bouvard V, May E (2001) Reciprocal down-regulation of p53 and SOD2 gene expression-implication in p53 mediated apoptosis. Oncogene 20:430

    Article  CAS  PubMed  Google Scholar 

  • Evens AM, Balasubramanian L, Gordon LI (2005) Motexafin gadolinium induces oxidative stress and apoptosis in hematologic malignancies. Curr Treat Options Oncol 6:289

    Article  PubMed  Google Scholar 

  • Fawcett H, Mader JS, Robichaud M, Giacomantonio C, Hoskin DW (2005) Contribution of reactive oxygen species and caspase-3 to apoptosis and attenuated ICAM-1 expression by paclitaxel-treated MDA-MB-435 breast carcinoma cells. Int J Oncol 27:1717

    CAS  PubMed  Google Scholar 

  • Findlay VJ et al (2004) Tumor cell responses to a novel glutathione S-transferase-activated nitric oxide-releasing prodrug. Mol Pharmacol 65:1070

    Article  CAS  PubMed  Google Scholar 

  • Forchhammer K, Leinfelder W, Bock A (1989) Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature 342:453

    Article  CAS  PubMed  Google Scholar 

  • Gate L, Majumdar RS, Lunk A, Tew KD (2004) Increased myeloproliferation in glutathione S-transferase pi-deficient mice is associated with a deregulation of JNK and Janus kinase/STAT pathways. J Biol Chem 279:8608

    Article  CAS  PubMed  Google Scholar 

  • Gosset P, Wallaert B, Tonnel AB, Fourneau C (1999) Thiol regulation of the production of TNF-alpha, IL-6 and IL-8 by human alveolar macrophages. Eur Respir J 14:98

    Article  CAS  PubMed  Google Scholar 

  • Guzman ML et al (2007) Rapid and selective death of leukemia stem and progenitor cells induced by the compound 4-benzyl, 2-methyl, 1,2,4-thiadiazolidine, 3,5 dione (TDZD-8). Blood 110:4436

    Article  CAS  PubMed  Google Scholar 

  • Hausheer FH et al (1998) Modulation of platinum-induced toxicities and therapeutic index: mechanistic insights and first- and second-generation protecting agents. Semin Oncol 25:584

    CAS  PubMed  Google Scholar 

  • Hayes JD, McMahon M (2006) The double-edged sword of Nrf2: subversion of redox homeostasis during the evolution of cancer. Mol Cell 21:732

    Article  CAS  PubMed  Google Scholar 

  • Hayes JD, McMahon M (2009) NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 34:176

    Article  CAS  PubMed  Google Scholar 

  • Herzenberg LA et al (1997) Glutathione deficiency is associated with impaired survival in HIV disease. Proc Natl Acad Sci USA 94:1967

    Article  CAS  PubMed  Google Scholar 

  • Hondal RJ, Ruggles EL (2011) Differing views of the role of selenium in thioredoxin reductase. Amino Acids 41:73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hosokawa K et al (2007) Function of oxidative stress in the regulation of hematopoietic stem cell-niche interaction. Biochem Biophys Res Commun 363:578

    Article  CAS  PubMed  Google Scholar 

  • Ito K et al (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12:446

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki H, Suda T (2009) Cancer stem cells and their niche. Cancer Sci 100:1166

    Article  CAS  PubMed  Google Scholar 

  • Jang YY, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110:3056

    Article  CAS  PubMed  Google Scholar 

  • Jeong M et al (2009) Thioredoxin-interacting protein regulates hematopoietic stem cell quiescence and mobilization under stress conditions. J Immunol 183:2495

    Article  CAS  PubMed  Google Scholar 

  • Jin Y et al (2010) Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-kappaB pathway and generation of reactive oxygen species. Cancer Res 70:2516

    Article  CAS  PubMed  Google Scholar 

  • Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295:C849

    Article  CAS  PubMed  Google Scholar 

  • Kanter MZ (2006) Comparison of oral and i.v. acetylcysteine in the treatment of acetaminophen poisoning. Am J Health Syst Pharm 63:1821

    Article  CAS  PubMed  Google Scholar 

  • Kelly GS (1998) Clinical applications of N-acetylcysteine. Altern Med Rev 3:114

    CAS  PubMed  Google Scholar 

  • Khodarev NN, Kataoka Y, Murley JS, Weichselbaum RR, Grdina DJ (2004) Interaction of amifostine and ionizing radiation on transcriptional patterns of apoptotic genes expressed in human microvascular endothelial cells (HMEC). Int J Radiat Oncol Biol Phys 60:553

    Article  CAS  PubMed  Google Scholar 

  • Knight GD, Laubscher KH, Fore ML, Clark DA, Scallen TJ (1994) Vitalethine modulates erythropoiesis and neoplasia. Cancer Res 54:5623

    CAS  PubMed  Google Scholar 

  • Korst AE, Eeltink CM, Vermorken JB, van der Vijgh WJ (1997) Pharmacokinetics of amifostine and its metabolites in patients. Eur J Cancer 33:1425

    Article  CAS  PubMed  Google Scholar 

  • Koukourakis MI et al (2004) Amifostine induces anaerobic metabolism and hypoxia-inducible factor 1 alpha. Cancer Chemother Pharmacol 53:8

    CAS  PubMed  Google Scholar 

  • Kryukov GV et al (2003) Characterization of mammalian selenoproteomes. Science 300:1439

    Article  CAS  PubMed  Google Scholar 

  • Levy EJ, Anderson ME, Meister A (1993) Transport of glutathione diethyl ester into human cells. Proc Natl Acad Sci USA 90:9171

    Article  CAS  PubMed  Google Scholar 

  • Li JJ, Oberley LW (1997) Overexpression of manganese-containing superoxide dismutase confers resistance to the cytotoxicity of tumor necrosis factor alpha and/or hyperthermia. Cancer Res 57:1991

    CAS  PubMed  Google Scholar 

  • List AF et al (1997) Stimulation of hematopoiesis by amifostine in patients with myelodysplastic syndrome. Blood 90:3364

    CAS  PubMed  Google Scholar 

  • List AF, Heaton R, Glinsmann-Gibson B, Capizzi RL (1998) Amifostine stimulates formation of multipotent and erythroid bone marrow progenitors. Leukemia 12:1596

    Article  CAS  PubMed  Google Scholar 

  • Lothrop AP, Ruggles EL, Hondal RJ (2009) No selenium required: reactions catalyzed by mammalian thioredoxin reductase that are independent of a selenocysteine residue. Biochemistry 48:6213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lyons RM, Wilks ST, Young S, Brown GL (2011) Oral ezatiostat HCl (Telintra(R), TLK199) and idiopathic chronic neutropenia (ICN): a case report of complete response of a patient with G-CSF resistant ICN following teatment with ezatiostat, a glutathione S-transferase P1-1 (GSTP1-1) inhibitor. J Hematol Oncol 4:43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lyttle MH et al (1994) Glutathione-S-transferase activates novel alkylating agents. J Med Chem 37:1501

    Article  CAS  PubMed  Google Scholar 

  • Mannervik B (1985) The isoenzymes of glutathione transferase. Adv Enzymol Relat Areas Mol Biol 57:357

    CAS  PubMed  Google Scholar 

  • Marenzi G et al (2006) N-acetylcysteine and contrast-induced nephropathy in primary angioplasty. N Engl J Med 354:2773

    Article  CAS  PubMed  Google Scholar 

  • Marshall JR (2001) Larry Clark’s legacy: randomized controlled, selenium-based prostate cancer chemoprevention trials. Nutr Cancer 40:74

    Article  CAS  PubMed  Google Scholar 

  • Martin KR, Kari FW, Barrett JC, French JE (2000) N-acetyl-L-cysteine simultaneously increases mitogenesis and suppresses apoptosis in mitogen-stimulated B-lymphocytes from p53 haploinsufficient Tg.AC (v-Ha-ras) mice. In Vitr Mol Toxicol 13(Winter):237

    CAS  PubMed  Google Scholar 

  • Miseta A, Csutora P (2000) Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol Biol Evol 17:1232

    Article  CAS  PubMed  Google Scholar 

  • Morgan AS, Ciaccio PJ, Tew KD, Kauvar LM (1996) Isozyme-specific glutathione S-transferase inhibitors potentiate drug sensitivity in cultured human tumor cell lines. Cancer Chemother Pharmacol 37:363

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H et al (2001) Circulating thioredoxin suppresses lipopolysaccharide-induced neutrophil chemotaxis. Proc Natl Acad Sci USA 98:15143

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Masutani H, Yodoi J (2002) Redox imbalance and its control in HIV infection. Antioxid Redox Signal 4:455

    Article  CAS  PubMed  Google Scholar 

  • Neuwelt EA, Pagel MA, Kraemer DF, Peterson DR, Muldoon LL (2004) Bone marrow chemoprotection without compromise of chemotherapy efficacy in a rat brain tumor model. J Pharmacol Exp Ther 309:594

    Article  CAS  PubMed  Google Scholar 

  • Nie Y, Han YC, Zou YR (2008) CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 205:777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Dwyer PJ et al (1991) Phase I study of thiotepa in combination with the glutathione transferase inhibitor ethacrynic acid. Cancer Res 51:6059

    PubMed  Google Scholar 

  • O’Shea JJ, Gadina M, Schreiber RD (2002) Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109(Suppl):S121

    Article  PubMed  Google Scholar 

  • Palmer LA et al (2007) S-nitrosothiols signal hypoxia-mimetic vascular pathology. J Clin Invest 117:2592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 104:5431

    Article  CAS  PubMed  Google Scholar 

  • Pelicano H et al (2003) Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278:37832

    Article  CAS  PubMed  Google Scholar 

  • Pendyala L et al (2003) Modulation of plasma thiols and mixed disulfides by BNP7787 in patients receiving paclitaxel/cisplatin therapy. Cancer Chemother Pharmacol 51:376

    CAS  PubMed  Google Scholar 

  • Peterson JD, Herzenberg LA, Vasquez K, Waltenbaugh C (1998) Glutathione levels in antigen-presenting cells modulate Th1 versus Th2 response patterns. Proc Natl Acad Sci USA 95:3071

    Article  CAS  PubMed  Google Scholar 

  • Pluquet O et al (2003) The cytoprotective aminothiol WR1065 activates p53 through a non-genotoxic signaling pathway involving c-Jun N-terminal kinase. J Biol Chem 278:11879

    Article  CAS  PubMed  Google Scholar 

  • Rahmani M et al (2005) Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res 65:2422

    Article  CAS  PubMed  Google Scholar 

  • Raza A et al (2009a) Phase 1-2a multicenter dose-escalation study of ezatiostat hydrochloride liposomes for injection (Telintra, TLK199), a novel glutathione analog prodrug in patients with myelodysplastic syndrome. J Hematol Oncol 2:20

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Raza A et al (2009b) Phase 1 multicenter dose-escalation study of ezatiostat hydrochloride (TLK199 tablets), a novel glutathione analog prodrug, in patients with myelodysplastic syndrome. Blood 113:6533

    Article  CAS  PubMed  Google Scholar 

  • Raza A et al (2012) A phase 2 randomized multicenter study of 2 extended dosing schedules of oral ezatiostat in low to intermediate-1 risk myelodysplastic syndrome. Cancer 118(8):2138–2147

    Article  CAS  PubMed  Google Scholar 

  • Reinemer P et al (1992) Three-dimensional structure of class pi glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8 A resolution. J Mol Biol 227:214

    Article  CAS  PubMed  Google Scholar 

  • Reliene R, Schiestl RH (2006) Antioxidant N-acetyl cysteine reduces incidence and multiplicity of lymphoma in Atm deficient mice. DNA Repair 5:852

    Article  CAS  PubMed  Google Scholar 

  • Ribizzi I, Darnowski JW, Goulette FA, Sertoli MR, Calabresi P (2000) Amifostine cytotoxicity and induction of apoptosis in a human myelodysplastic cell line. Leuk Res 24:519

    Article  CAS  PubMed  Google Scholar 

  • Roberts RL, Aroda VR, Ank BJ (1995) N-acetylcysteine enhances antibody-dependent cellular cytotoxicity in neutrophils and mononuclear cells from healthy adults and human immunodeficiency virus-infected patients. J Infect Dis 172:1492

    Article  CAS  PubMed  Google Scholar 

  • Romano MF et al (1999) Amifostine inhibits hematopoietic progenitor cell apoptosis by activating NF-kappaB/Rel transcription factors. Blood 94:4060

    CAS  PubMed  Google Scholar 

  • Rosario LA, O’Brien ML, Henderson CJ, Wolf CR, Tew KD (2000) Cellular response to a glutathione S-transferase P1-1 activated prodrug. Mol Pharmacol 58:167

    CAS  PubMed  Google Scholar 

  • Rosen LS et al (2004) Phase 1 study of TLK286 (Telcyta) administered weekly in advanced malignancies. Clin Cancer Res 10:3689

    Article  CAS  PubMed  Google Scholar 

  • Rovin BH, Dickerson JA, Tan LC, Fassler J (1997) Modulation of IL-1-induced chemokine expression in human mesangial cells through alterations in redox status. Cytokine 9:178

    Article  CAS  PubMed  Google Scholar 

  • Ruscoe JE et al (2001) Pharmacologic or genetic manipulation of glutathione S-transferase P1-1 (GSTpi) influences cell proliferation pathways. J Pharmacol Exp Ther 298:339

    CAS  PubMed  Google Scholar 

  • Saavedra JE et al (2001) The secondary amine/nitric oxide complex ion R(2)N[N(O)NO](−) as nucleophile and leaving group in S9N)Ar reactions. J Org Chem 66:3090

    Article  CAS  PubMed  Google Scholar 

  • Saavedra JE et al (2006) PABA/NO as an anticancer lead: analogue synthesis, structure revision, solution chemistry, reactivity toward glutathione, and in vitro activity. J Med Chem 49:1157

    Article  CAS  PubMed  Google Scholar 

  • Sablina AA et al (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11:1306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sahaf B, Heydari K, Herzenberg LA (2005) The extracellular microenvironment plays a key role in regulating the redox status of cell surface proteins in HIV-infected subjects. Arch Biochem Biophys 434:26

    Article  CAS  PubMed  Google Scholar 

  • Schanz J et al (2009) Amifostine has the potential to induce haematologic responses and decelerate disease progression in individual patients with low- and intermediate-1-risk myelodysplastic syndromes. Leuk Res 33:1183

    Article  CAS  PubMed  Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7

    CAS  PubMed  Google Scholar 

  • Shanmugarajah D et al (2009) Analysis of BNP7787 thiol-disulfide exchange reactions in phosphate buffer and human plasma using microscale electrochemical high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 877:857

    Article  CAS  PubMed  Google Scholar 

  • Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390

    Article  CAS  PubMed  Google Scholar 

  • Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1

    Article  CAS  PubMed  Google Scholar 

  • Shen H et al (2001) Binding of the aminothiol WR-1065 to transcription factors influences cellular response to anticancer drugs. J Pharmacol Exp Ther 297:1067

    CAS  PubMed  Google Scholar 

  • Sinning I et al (1993) Structure determination and refinement of human alpha class glutathione transferase A1–1, and a comparison with the Mu and Pi class enzymes. J Mol Biol 232:192

    Article  CAS  PubMed  Google Scholar 

  • Smith J, Ladi E, Mayer-Proschel M, Noble M (2000) Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc Natl Acad Sci USA 97:10032

    Article  CAS  PubMed  Google Scholar 

  • Songstad J, Pearson RG (1967) Application of the principle of hard and soft acids and bases to organic chemistry. J Am Chem Soc 89:1827

    Article  Google Scholar 

  • Songstad J, Pearson RG (1968) Nucleophilic reactivity constants toward methyl iodide and trans-[Pt(py)2Cl2]. J Am Chem Soc 90:319

    Article  Google Scholar 

  • Spencer SR, Wilczak CA, Talalay P (1990) Induction of glutathione transferases and NAD(P)H:quinone reductase by fumaric acid derivatives in rodent cells and tissues. Cancer Res 50:7871

    CAS  PubMed  Google Scholar 

  • Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794

    CAS  PubMed  Google Scholar 

  • Terada K, Kaziro Y, Satoh T (1997) Ras-dependent activation of c-Jun N-terminal kinase/stress-activated protein kinase in response to interleukin-3 stimulation in hematopoietic BaF3 cells. J Biol Chem 272:4544

    Article  CAS  PubMed  Google Scholar 

  • Tesio M et al (2011) Enhanced c-Met activity promotes G-CSF-induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood 117:419

    Article  CAS  PubMed  Google Scholar 

  • Tew KD (1994) Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 54:4313

    CAS  PubMed  Google Scholar 

  • Tew KD, Kyle G, Johnson A, Wang AL (1985) Carbamoylation of glutathione reductase and changes in cellular and chromosome morphology in a rat cell line resistant to nitrogen mustards but collaterally sensitive to nitrosoureas. Cancer Res 45:2326

    CAS  PubMed  Google Scholar 

  • Tew KD et al (2011) The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radic Biol Med 51:299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tirouvanziam R, Conrad CK, Bottiglieri T, Herzenberg LA, Moss RB (2006) High-dose oral N-acetylcysteine, a glutathione prodrug, modulates inflammation in cystic fibrosis. Proc Natl Acad Sci USA 103:4628

    Article  CAS  PubMed  Google Scholar 

  • Tothova Z et al (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128:325

    Article  CAS  PubMed  Google Scholar 

  • Townsend DM, Shen H, Staros AL, Gate L, Tew KD (2002) Efficacy of a glutathione S-transferase pi-activated prodrug in platinum-resistant ovarian cancer cells. Mol Cancer Ther 1:1089

    CAS  PubMed  Google Scholar 

  • Townsend DM et al (2006) A glutathione S-transferase pi-activated prodrug causes kinase activation concurrent with S-glutathionylation of proteins. Mol Pharmacol 69:501

    Article  CAS  PubMed  Google Scholar 

  • Townsend DM, Pazoles CJ, Tew KD (2008) NOV-002, a mimetic of glutathione disulfide. Expert Opin Investig Drugs 17:1075

    Article  CAS  PubMed  Google Scholar 

  • Townsend DM et al (2009) Novel role for glutathione S-transferase pi. Regulator of protein S-Glutathionylation following oxidative and nitrosative stress. J Biol Chem 284:436

    Article  CAS  PubMed  Google Scholar 

  • Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343

    Article  CAS  PubMed  Google Scholar 

  • Velu CS, Niture SK, Doneanu CE, Pattabiraman N, Srivenugopal KS (2007) Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochemistry 46:7765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verschraagen M et al (2004) Possible (enzymatic) routes and biological sites for metabolic reduction of BNP7787, a new protector against cisplatin-induced side-effects. Biochem Pharmacol 68:493

    Article  CAS  PubMed  Google Scholar 

  • Wessjohann LA, Schneider A, Abbas M, Brandt W (2007) Selenium in chemistry and biochemistry in comparison to sulfur. Biol Chem 388:997

    CAS  PubMed  Google Scholar 

  • Wilson A et al (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135:1118

    Article  CAS  PubMed  Google Scholar 

  • Wondrak GT (2009) Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 11:3013

    Article  CAS  PubMed  Google Scholar 

  • Xinhua J (2008) Structure-based design of anticancer prodrug PABA/NO. Drug Des Devel Ther 2:123

    Google Scholar 

  • Zafarullah M, Li WQ, Sylvester J, Ahmad M (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60:6

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Hileman EO, Plunkett W, Keating MJ, Huang P (2003) Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood 101:4098

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (ES017453, CA08660 and CA117259) and support from the South Carolina Centers of Excellence program. We thank the Drug Metabolism and Pharmacokinetics and Proteomics Core Facilities at the Medical University of South Carolina. This work was conducted in a facility constructed with support from the National Institutes of Health, Grant Number C06 RR015455 from the Extramural Research Facilities Program of the National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danyelle M. Townsend .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Townsend, D.M., Tew, K.D. (2013). Redox Pathways as a Platform in Drug Development. In: Jakob, U., Reichmann, D. (eds) Oxidative Stress and Redox Regulation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5787-5_16

Download citation

Publish with us

Policies and ethics